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Sensor Configuration and
Coordinate System Transformations

• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Calibrate a Monocular Camera” on page 1-9
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Coordinate Systems in Automated Driving Toolbox
Automated Driving Toolbox uses these coordinate systems:

• World: A fixed universal coordinate system in which all vehicles and their sensors are
placed.

• Vehicle: Anchored to the ego vehicle. Typically, the vehicle coordinate system is
placed on the ground right below the midpoint of the rear axle.

• Sensor: Specific to a particular sensor, such as a camera or a radar.
• Spatial: Specific to an image captured by a camera. Locations in spatial coordinates

are expressed in units of pixels.
• Pattern: A checkerboard pattern coordinate system, typically used to calibrate

camera sensors.

These coordinate systems apply across Automated Driving Toolbox functionality, from
perception to control to driving scenario simulation. For information on specific
differences and implementation details in the 3D simulation environment using the Unreal
Engine® from Epic Games®, see “Coordinate Systems for 3D Simulation in Automated
Driving Toolbox” on page 6-13.

World Coordinate System
All vehicles, sensors, and their related coordinate systems are placed in the world
coordinate system. A world coordinate system is important in global path planning,
localization, mapping, and driving scenario simulation. Automated Driving Toolbox uses
the right-handed Cartesian world coordinate system defined in ISO 8855, where the Z-
axis points up from the ground. Units are in meters.

Vehicle Coordinate System
The vehicle coordinate system (XV, YV, ZV) used by Automated Driving Toolbox is anchored
to the ego vehicle. The term ego vehicle refers to the vehicle that contains the sensors
that perceive the environment around the vehicle.

• The XV axis points forward from the vehicle.
• The YV axis points to the left, as viewed when facing forward.
• The ZV axis points up from the ground to maintain the right-handed coordinate system.

1 Sensor Configuration and Coordinate System Transformations
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The vehicle coordinate system follows the ISO 8855 convention for rotation. Each axis is
positive in the clockwise direction, when looking in the positive direction of that axis.

In most Automated Driving Toolbox functionality, such as cuboid driving scenario
simulations and visual perception algorithms, the origin of the vehicle coordinate system
is on the ground, below the midpoint of the rear axle. In 3D driving scenario simulations,
the origin is on ground, below the longitudinal and lateral center of the vehicle. For more

 Coordinate Systems in Automated Driving Toolbox
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details, see “Coordinate Systems for 3D Simulation in Automated Driving Toolbox” on
page 6-13.

Locations in the vehicle coordinate system are expressed in world units, typically meters.

Values returned by individual sensors are transformed into the vehicle coordinate system
so that they can be placed in a unified frame of reference.

For global path planning, localization, mapping, and driving scenario simulation, the state
of the vehicle can be described using the pose of the vehicle. The steering angle of the
vehicle is positive in the counterclockwise direction.

Sensor Coordinate System
An automated driving system can contain sensors located anywhere on or in the vehicle.
The location of each sensor contains an origin of its coordinate system. A camera is one
type of sensor used often in an automated driving system. Points represented in a camera
coordinate system are described with the origin located at the optical center of the
camera.

1 Sensor Configuration and Coordinate System Transformations
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The yaw, pitch, and roll angles of sensors follow an ISO convention. These angles have
positive clockwise directions when looking in the positive direction of the Z-, Y-, and X-
axes, respectively.

 Coordinate Systems in Automated Driving Toolbox
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Spatial Coordinate System
Spatial coordinates enable you to specify a location in an image with greater granularity
than pixel coordinates. In the pixel coordinate system, a pixel is treated as a discrete unit,
uniquely identified by an integer row and column pair, such as (3,4). In the spatial
coordinate system, locations in an image are represented in terms of partial pixels, such
as (3.3,4.7).

For more information on the spatial coordinate system, see “Spatial Coordinates” (Image
Processing Toolbox).

Pattern Coordinate System
To estimate the parameters of a monocular camera sensor, a common technique is to
calibrate the camera using multiple images of a calibration pattern, such as a
checkerboard. In the pattern coordinate system, (XP, YP), the XP-axis points to the right
and the YP-axis points down. The checkerboard origin is the bottom-right corner of the
top-left square of the checkerboard.

 Coordinate Systems in Automated Driving Toolbox
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Each checkerboard corner represents another point in the coordinate system. For
example, the corner to the right of the origin is (1,0) and the corner below the origin is
(0,1). For more information on calibrating a camera by using a checkerboard pattern, see
“Calibrate a Monocular Camera” on page 1-9.

See Also

More About
• “Coordinate Systems for 3D Simulation in Automated Driving Toolbox” on page 6-

13
• “Coordinate Systems” (Computer Vision Toolbox)
• “Image Coordinate Systems” (Image Processing Toolbox)
• “Calibrate a Monocular Camera” on page 1-9

1 Sensor Configuration and Coordinate System Transformations
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Calibrate a Monocular Camera
A monocular camera is a common type of vision sensor used in automated driving
applications. When mounted on an ego vehicle, this camera can detect objects, detect
lane boundaries, and track objects through a scene.

Before you can use the camera, you must calibrate it. Camera calibration is the process of
estimating the intrinsic and extrinsic parameters of a camera using images of a
calibration pattern, such as a checkerboard. After you estimate the intrinsic and extrinsic
parameters, you can use them to configure a model of a monocular camera.

Estimate Intrinsic Parameters
The intrinsic parameters of a camera are the properties of the camera, such as its focal
length and optical center. To estimate these parameters for a monocular camera, use
Computer Vision Toolbox™ functions and images of a checkerboard pattern.

• If the camera has a standard lens, use the estimateCameraParameters function.
• If the camera has a fisheye lens, use the estimateFisheyeParameters function.

Alternatively, to better visualize the results, use the Camera Calibrator app. For
information on setting up the camera, preparing the checkerboard pattern, and
calibration techniques, see “Single Camera Calibrator App” (Computer Vision Toolbox).

Place Checkerboard for Extrinsic Parameter Estimation
For a monocular camera mounted on a vehicle, the extrinsic parameters define the
mounting position of that camera. These parameters include the rotation angles of the
camera with respect to the vehicle coordinate system, and the height of the camera above
the ground.

Before you can estimate the extrinsic parameters, you must capture an image of a
checkerboard pattern from the camera. Use the same checkerboard pattern that you used
to estimate the intrinsic parameters.

The checkerboard uses a pattern-centric coordinate system (XP, YP), where the XP-axis
points to the right and the YP-axis points down. The checkerboard origin is the bottom-
right corner of the top-left square of the checkerboard.

 Calibrate a Monocular Camera
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When placing the checkerboard pattern in relation to the vehicle, the XP- and YP-axes
must align with the XV- and YV-axes of the vehicle. In the vehicle coordinate system, the
XV-axis points forward from the vehicle and the YV-axis points to the left, as viewed when
facing forward. The origin is on the road surface, directly below the camera center (the
focal point of the camera).

The orientation of the pattern can be either horizontal or vertical.

1 Sensor Configuration and Coordinate System Transformations
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Horizontal Orientation

In the horizontal orientation, the checkerboard pattern is either on the ground or parallel
to the ground. You can place the pattern in front of the vehicle, in back of the vehicle, or
on the left or right side of the vehicle.

Vertical Orientation

In the vertical orientation, the checkerboard pattern is perpendicular to the ground. You
can place the pattern in front of the vehicle, in back of the vehicle, or on the left of right
side of the vehicle.

 Calibrate a Monocular Camera
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Estimate Extrinsic Parameters
After placing the checkerboard in the location you want, capture an image of it using the
monocular camera. Then, use the estimateMonoCameraParameters function to
estimate the extrinsic parameters. To use this function, you must specify the following:

• The intrinsic parameters of the camera
• The key points detected in the image, in this case the corners of the checkerboard

squares

1 Sensor Configuration and Coordinate System Transformations
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• The world points of the checkerboard
• The height of the checkerboard pattern's origin above the ground

For example, for image I and intrinsic parameters intrinsics, the following code
estimates the extrinsic parameters. By default, estimateMonoCameraParameters
assumes that the camera is facing forward and that the checkerboard pattern has a
horizontal orientation.

[imagePoints,boardSize] = detectCheckerboardPoints(I);
squareSize = 0.029; % Square size in meters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
patternOriginHeight = 0; % Pattern is on ground
[pitch,yaw,roll,height] = estimateMonoCameraParameters(intrinsics, ...
                             imagePoints,worldPoints,patternOriginHeight);

To increase estimation accuracy of these parameters, capture multiple images and
average the values of the image points.

Configure Camera Using Intrinsic and Extrinsic Parameters
Once you have the estimated intrinsic and extrinsic parameters, you can use the
monoCamera object to configure a model of the camera. The following sample code shows
how to configure the camera using parameters intrinsics, height, pitch, yaw, and
roll:

monoCam = monoCamera(intrinsics,height,'Pitch',pitch,'Yaw',yaw,'Roll',roll);

See Also
Apps
Camera Calibrator

Functions
detectCheckerboardPoints | estimateCameraParameters |
estimateFisheyeParameters | estimateMonoCameraParameters |
generateCheckerboardPoints

Objects
monoCamera

 See Also
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More About
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Configure Monocular Fisheye Camera”
• “Single Camera Calibrator App” (Computer Vision Toolbox)

1 Sensor Configuration and Coordinate System Transformations
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Ground Truth Labeling and
Verification

• “Get Started with the Ground Truth Labeler” on page 2-2
• “Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler” on page 2-24
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Get Started with the Ground Truth Labeler
The Ground Truth Labeler app provides an easy way to mark rectangular region of
interest (ROI) labels, polyline ROI labels, pixel ROI labels, and scene labels in a video or
image sequence. This example gets you started using the app by showing you how to:

• Manually label an image frame from a video.
• Automatically label across image frames using an automation algorithm.
• Export the labeled ground truth data.

Load Unlabeled Data
Open the app and load a video of vehicles driving on a highway. Videos must be in a file
format readable by VideoReader.

groundTruthLabeler('visiontraffic.avi')

Alternatively, open the app from the Apps tab, under Automotive. Then, from the Load
menu, load a video data source.

Explore the video. Click the Play button  to play the entire video, or use the slider 
to navigate between frames.

2 Ground Truth Labeling and Verification
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The app also enables you to load image sequences, with corresponding timestamps, by
selecting Load > Image Sequence. The images must be readable by imread.

To load a custom data source that is readable by VideoReader or imread, see “Use
Custom Data Source Reader for Ground Truth Labeling” (Computer Vision Toolbox).

 Get Started with the Ground Truth Labeler
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Set Time Interval to Label
You can label the entire video or start with a portion of the video. In this example, you
label a five-second time interval within the loaded video. In the text boxes below the
video, enter these times in seconds:

1 In the Current Time box, type 5 and press Enter.
2 In the Start Time box, type 5 so that the slider is at the start of the time interval.
3 In the End Time box, type 10.

Optionally, to make adjustments to the time interval, click and drag the red interval flags.

The entire app is now set up to focus on this specific time interval. The video plays only
within this interval, and labeling and automation algorithms apply only to this interval.
You can change the interval at any time by moving the flags.

To expand the time interval to fill the entire playback section, click Zoom in Time
Interval.

Create Label Definitions
Define the labels you intend to draw. In this example, you define labels directly within the
app. To define labels from the MATLAB® command line instead, use the
labelDefinitionCreator.

Create ROI Labels

An ROI label is a label that corresponds to a region of interest (ROI). You can define these
types of ROI labels.
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ROI Label Description Example: Driving Scene
Rectangle Draw rectangular ROI labels

(bounding boxes) around
objects.

Vehicles, pedestrians, road
signs

Line Draw linear ROI labels to
represent lines. To draw a
polyline ROI, use two or
more points.

Lane boundaries, guard
rails, road curbs

 Get Started with the Ground Truth Labeler

2-5



ROI Label Description Example: Driving Scene
Pixel label Assign labels to pixels for

semantic segmentation. You
can label pixels manually
using polygons, brushes, or
flood fill. See “Label Pixels
for Semantic Segmentation”
(Computer Vision Toolbox).

Vehicles, road surface,
trees, pavement

In this example, you define a vehicle group for labeling types of vehicles, and then
create a Rectangle ROI label for a Car and a Truck.

1 In the ROI Label Definition pane on the left, click Label.
2 Create a Rectangle label named Car.
3 From the Group drop-down menu, select New Group and name the group Vehicle
4 Click OK.

The Vehicle group name appears in the ROI Label Definition pane with the label
Car created. You can move a labels to a different position or group by left-clicking
and dragging the label.

5 Add a second label. Click Label. Name the label Truck and make sure the Vehicle
group is selected. Click OK.

6 In the first video frame within the time interval, use the mouse to draw rectangular
Car ROIs around the two vehicles.
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Create Sublabels

A sublabel is a type of ROI label that corresponds to a parent ROI label. Each sublabel
must belong to, or be a child of, a specific label defined in the ROI Label Definition
pane. For example, in a driving scene, a vehicle label might have sublabels for headlights,
license plates, or wheels.

Define a sublabel for headlights.

1 In the ROI Label Definition pane on the left, click the Car label.
2 Click Sublabel.
3 Create a Rectangle sublabel named headlight and optionally write a description.

Click OK.

The headlight sublabel appears in the ROI Label Definition pane. The sublabel is
nested under the selected ROI label, Car, and has the same color as its parent label.

You can add multiple sublabels under a label. You can also drag-and-drop the
sublabels to reorder them in the list. Right-click any label for additional edits.
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4 In the ROI Label Definition pane, select the headlight sublabel.
5 In the video frame, select the Car label. The label turns yellow when selected. You

must select the Car label (parent ROI) before you can add a sublabel to it.

Draw headlight sublabels for each of the cars.
6 Repeat the previous steps to label the headlights of the other car. To draw the labels

more precisely, use the Pan, Zoom In, and Zoom Out options available from the
toolstrip.
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Sublabels can only be used with rectangular or polyline ROI labels and cannot have their
own sublabels. For more details on working with sublabels, see “Use Sublabels and
Attributes to Label Ground Truth Data” (Computer Vision Toolbox).

Create Attributes

An attribute provides further categorization of an ROI label or sublabel. Attributes specify
additional information about a drawable label. For example, in a driving scene, attributes
might include the type or color of a vehicle.

You can define these types of attributes.

Attribute Type Sample Attribute
Definition

Sample Default Values

Numeric Value

String

Logical
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Attribute Type Sample Attribute
Definition

Sample Default Values

List

Add an attribute for the vehicle type.

1 In the ROI Label Definition pane on the left, select the Car label and click
Attribute.

2 In the Attribute Name box, type carType. Set the attribute type to List.
3 In the List Items section, type different types of cars, such as Sedan, Hatchback,

and Wagon, each on its own line. Optionally give the attribute a description, and click
OK.
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4 In the first frame of the video, select a Car ROI label. In the Attributes and
Sublabels pane, select the appropriate carType attribute value for that vehicle.

5 Repeat the previous step to assign a carType attribute to the other vehicle.

You can also add attributes to sublabels. Add an attribute for the headlight sublabel that
tells whether the headlight is on.

1 In the ROI Label Definition pane on the left, select the headlight sublabel and
click Attribute.
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2 In the Attribute Name box, type isOn. Set the attribute type to Logical. Leave the
Default Value set to Empty, optionally write a description, and click OK.

3 Select a headlight in the video frame. Set the appropriate isOn attribute value, or
leave the attribute value set to Empty.

4 Repeat the previous step to set the isOn attribute for the other headlights.
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To delete an attribute, right-click an ROI label or sublabel, and select the attribute to
delete. Deleting the attribute removes attribute information from all previously created
ROI label annotations.

Create Scene Labels

A scene label defines additional information for the entire scene. Use scene labels to
describe conditions, such as lighting and weather, or events, such as lane changes.

Create a scene label to use in the video.

1 In the Scene Label Definition pane on the left, click the Define new scene label
button, and create a scene label named sunny. Make sure Group is set to None.
Click OK.

The Scene Label Definition pane shows the scene label definition. The scene labels
that are applied to the current frame appear in the Scene Labels pane on the right.
The sunny scene label is empty (white), because the scene label has not yet been
applied to the frame.

2 The entire scene is sunny, so specify to apply the sunny scene label over the entire
time interval. With the sunny scene label definition still selected in the Scene Label
Definition pane, select Time Interval.

3 Click Add Label.

The sunny label now applies to all frames in the time interval.
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Label Ground Truth
So far, you have labeled only one frame in the video. To label the remaining frames,
choose one of these options.

Label Ground Truth Manually

When you click the right arrow key to advance to the next frame, the ROI labels from the
previous frame do not carry over. Only the sunny scene label applies to each frame,
because this label was applied over the entire time interval.

Advance frame by frame and draw the label and sublabel ROIs manually. Also update the
attribute information for these ROIs.

Label Ground Truth Using Automation Algorithm

To speed up the labeling process, you can use an automation algorithm within the app.
You can either define your own automation algorithm, see “Create Automation Algorithm
for Labeling” (Computer Vision Toolbox) and “Temporal Automation Algorithms”
(Computer Vision Toolbox), or use a built-in automation algorithm. In this example, you
label the ground truth using a built-in point tracking algorithm.

In this example, you automate the labeling of only the Car ROI labels. The built-in
automation algorithms do not support sublabel and attribute automation.

1 Select the labels you want to automate. In the first frame of the video, press Ctrl and
click to select the two Car label annotations. The labels are highlighted in yellow.
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2 From the app toolstrip, select Select Algorithm > Point Tracker. This algorithm
tracks one or more rectangle ROIs over short intervals using the Kanade-Lucas-
Tomasi (KLT) algorithm.

3 (optional) Configure the automation settings. Click Configure Automation. By
default, the automation algorithm applies labels from the start of the time interval to
the end. To change the direction and start time of the algorithm, choose one of the
options shown in this table.

Direction of
automation

Run automation from Example
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Direction of
automation

Run automation from Example

The Import selected ROIs must be selected so that the Car labels you selected are
imported into the automation session.

4 Click Automate to open an automation session. The algorithm instructions appear in
the right pane, and the selected labels are available to automate.
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5 Click Run to track the selected ROIs over the interval.
6 Examine the results of running the algorithm.

The vehicles that enter the scene later are unlabeled. The unlabeled vehicles did not
have an initial ROI label, so the algorithm did not track them. Click Undo Run. Use
the slider to find the frames where each vehicle first appears. Draw vehicle ROIs
around each vehicle, and then click Run again.

7 Advance frame by frame and manually move, resize, delete, or add ROIs to improve
the results of the automation algorithm.

When you are satisfied with the algorithm results, click Accept. Alternatively, to
discard labels generated during the session and label manually instead, click Cancel.
The Cancel button cancels only the algorithm session, not the app session.

Optionally, you can now manually label the remaining frames with sublabel and attribute
information.

To further evaluate your labels, you can view a visual summary of the labeled ground
truth. From the app toolstrip, select View Label Summary. Use this summary to
compare the frames, frequency of labels, and scene conditions. For more details, see
“View Summary of Ground Truth Labels” (Computer Vision Toolbox). This summary does
not support sublabels or attributes.

 Get Started with the Ground Truth Labeler

2-17



Export Labeled Ground Truth
You can export the labeled ground truth to a MAT-file or to a variable in the MATLAB
workspace. In both cases, the labeled ground truth is stored as a groundTruth object.
You can use this object to train a deep-learning-based computer vision algorithm. For
more details, see “Training Data for Object Detection and Semantic Segmentation”
(Computer Vision Toolbox).

Note If you export pixel data, the pixel label data and ground truth data are saved in
separate files but in the same folder. For considerations when working with exported pixel
labels, see “How Labeler Apps Store Exported Pixel Labels” (Computer Vision Toolbox).

In this example, you export the labeled ground truth to the MATLAB workspace. From the
app toolstrip, select Export Labels > To Workspace. The exported MATLAB variable,
gTruth, is a groundTruth object.

Display the properties of the exported groundTruth object. The information in your
exported object might differ from the information shown here.

gTruth

gTruth = 

  groundTruth with properties:

          DataSource: [1×1 groundTruthDataSource]
    LabelDefinitions: [3×5 table]
           LabelData: [531×3 timetable]

Data Source

DataSource is a groundTruthDataSource object containing the path to the video and
the video timestamps. Display the properties of this object.

gTruth.DataSource

ans = 

groundTruthDataSource for a video file with properties

        Source: ...matlab\toolbox\vision\visiondata\visiontraffic.avi
    TimeStamps: [531×1 duration]
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Label Definitions

LabelDefinitions is a table containing information about the label definitions. This
table does not contain information about the labels that are drawn on the video frames.
To save the label definitions in their own MAT-file, from the app toolstrip, select Save >
Label Definitions. You can then import these label definitions into another app session
by selecting Import Files.

Display the label definitions table. Each row contains information about an ROI label
definition or a scene label definition. If you exported pixel label data, the
LabelDefinitions table also includes a PixelLabelID column containing the ID
numbers for each pixel label definition.

gTruth.LabelDefinitions

ans =

  3×5 table

     Name        Type         Group      Description     Hierarchy  
    _______    _________    _________    ___________    ____________

    'Car'      Rectangle    'Vehicle'        ''         [1×1 struct]
    'Truck'    Rectangle    'Vehicle'        ''         []          
    'sunny'    Scene        'None'           ''         []  

Within LabelDefinitions, the Hierarchy column stores information about the
sublabel and attribute definitions of a parent ROI label.

Display the sublabel and attribute information for the Car label.

gTruth.LabelDefinitions.Hierarchy{1}

ans = 

  struct with fields:

        carType: [1×1 struct]
      headlight: [1×1 struct]
           Type: Rectangle
    Description: ''

Display information about the headlight sublabel.

gTruth.LabelDefinitions.Hierarchy{1}.headlight
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ans = 

  struct with fields:

           Type: Rectangle
    Description: ''
           isOn: [1×1 struct]

Display information about the carType attribute.

gTruth.LabelDefinitions.Hierarchy{1}.carType

ans = 

  struct with fields:

      ListItems: {3×1 cell}
    Description: ''

Label Data

LabelData is a timetable containing information about the ROI labels drawn at each
timestamp, across the entire video. The timetable contains one column per label.

Display the first few rows of the timetable. The first few timestamps indicate that no
vehicles were detected and that the sunny scene label is false. These results are
because this portion of the video was not labeled. Only the time interval of 5–10 seconds
was labeled.

labelData = gTruth.labelData;
head(labelData)

ans =

  8×3 timetable

       Time           Car            Truck        sunny
    __________    ____________    ____________    _____

    5.005 sec     [1×2 struct]    [1×0 struct]    true 
    5.0384 sec    [1×2 struct]    [1×0 struct]    true 
    5.0717 sec    [1×2 struct]    [1×0 struct]    true 
    5.1051 sec    [1×2 struct]    [1×0 struct]    true 
    5.1385 sec    [1×2 struct]    [1×0 struct]    true 
    5.1718 sec    [1×2 struct]    [1×0 struct]    true 
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    5.2052 sec    [1×2 struct]    [1×0 struct]    true 
    5.2386 sec    [1×2 struct]    [1×0 struct]    true 

Display the first few timetable rows from the 5-10 second interval that contains labels.

gTruthInterval = labelData(timerange('00:00:05','00:00:10'),:);
head(gTruthInterval)

ans =

  8×3 timetable

       Time           Car            Truck        sunny
    __________    ____________    ____________    _____

    5.005 sec     [1×2 struct]    [1×0 struct]    true 
    5.0384 sec    [1×2 struct]    [1×0 struct]    true 
    5.0717 sec    [1×2 struct]    [1×0 struct]    true 
    5.1051 sec    [1×2 struct]    [1×0 struct]    true 
    5.1385 sec    [1×2 struct]    [1×0 struct]    true 
    5.1718 sec    [1×2 struct]    [1×0 struct]    true 
    5.2052 sec    [1×2 struct]    [1×0 struct]    true 
    5.2386 sec    [1×2 struct]    [1×0 struct]    true 

For each Car label, the structure includes the position of the bounding box and
information about its sublabels and attributes.

Display the bounding box positions for the vehicles at the start of the time interval. Your
bounding box positions might differ from the ones shown here.

gTruthInterval(1,:).Car{1}.Position % [x y width height], in pixels

ans =

  1×4 single row vector

  415.8962   82.4737  130.8474  129.3805

ans =

  1×4 single row vector

  235.2182    1.0000  117.0611   55.3500
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Save App Session
From the app toolstrip, select Save and save a MAT-file of the app session. The saved
session includes the data source, label definitions, and labeled ground truth. It also
includes your session preferences, such as the layout of the app. To change layout
options, select Layout.

The app session MAT-file is separate from the ground truth MAT-file that is exported when
you select Export > From File. To share labeled ground truth data, as a best practice,
share the ground truth MAT-file containing the groundTruth object, not the app session
MAT-file. For more details, see “Share and Store Labeled Ground Truth Data” (Computer
Vision Toolbox).

See Also
Apps
Ground Truth Labeler

Objects
driving.connector.Connector | groundTruth | groundTruthDataSource |
labelDefinitionCreator | vision.labeler.AutomationAlgorithm |
vision.labeler.mixin.Temporal

Related Examples
• “Automate Ground Truth Labeling of Lane Boundaries”
• “Automate Ground Truth Labeling for Semantic Segmentation”
• “Automate Attributes of Labeled Objects”
• “Evaluate Lane Boundary Detections Against Ground Truth Data”
• “Evaluate and Visualize Lane Boundary Detections Against Ground Truth”

More About
• “Use Custom Data Source Reader for Ground Truth Labeling” (Computer Vision

Toolbox)
• “Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler” on page 2-24
• “Use Sublabels and Attributes to Label Ground Truth Data” (Computer Vision

Toolbox)
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• “Label Pixels for Semantic Segmentation” (Computer Vision Toolbox)
• “Create Automation Algorithm for Labeling” (Computer Vision Toolbox)
• “View Summary of Ground Truth Labels” (Computer Vision Toolbox)
• “Share and Store Labeled Ground Truth Data” (Computer Vision Toolbox)
• “Training Data for Object Detection and Semantic Segmentation” (Computer Vision

Toolbox)

 See Also
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Keyboard Shortcuts and Mouse Actions for Ground Truth
Labeler

Note On Macintosh platforms, use the Command (⌘) key instead of Ctrl.

Label Definitions
Task Action
In the ROI Label Definition pane,
navigate through ROI labels and their
groups

Up arrow or down arrow

In the Scene Label Definition pane,
navigate through scene labels and their
groups

Hold Alt and press the up arrow or down
arrow

Reorder labels within a group or move
labels between groups

Click and drag labels

Reorder groups Click and drag groups

Frame Navigation and Time Interval Settings
Navigate between frames in a video or image sequence, and change the time interval of
the video or image sequence. These controls are located in the bottom pane of the app.

Task Action
Go to the next frame Right arrow
Go to the previous frame Left arrow
Go to the last frame • PC: End

• Mac: Hold Fn and press the right arrow
Go to the first frame • PC: Home

• Mac: Hold Fn and press the left arrow
Navigate through time interval boxes and
frame navigation buttons

Tab
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Task Action
Commit time interval settings Press Enter within the active time interval

box (Start Time, Current, or End Time)

Labeling Window
Perform labeling actions, such as adding, moving, and deleting regions of interest (ROIs).

Task Action
Undo labeling action Ctrl+Z
Redo labeling action Ctrl+Y
Select all rectangle and line ROIs Ctrl+A
Select specific rectangle and line ROIs Hold Ctrl and click the ROIs you want to

select
Cut selected rectangle and line ROIs Ctrl+X
Copy selected rectangle and line ROIs to
clipboard

Ctrl+C

Paste copied rectangle and line ROIs

• If a sublabel was copied, both the
sublabel and its parent label are pasted.

• If a parent label was copied, only the
parent label is pasted, not its sublabels.

For more details, see “Use Sublabels and
Attributes to Label Ground Truth Data”
(Computer Vision Toolbox).

Ctrl+V

Delete selected rectangle and line ROIs Delete
Copy all pixel ROIs Ctrl+shift+C
Paste copied pixel ROIs Ctrl+shift+V
Fill all or all remaining pixels Shift+click
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Polyline Drawing
Draw ROI line labels on a frame. ROI line labels are polylines, meaning that they are
composed of one or more line segments.

Task Action
Commit a polyline to the frame, excluding
the currently active line segment

Press Enter or right-click while drawing
the polyline

Commit a polyline to the frame, including
the currently active line segment

Double-click while drawing the polyline

A new line segment is committed at the
point where you double-click.

Delete the previously created line segment
in a polyline

Backspace

Cancel drawing and delete the entire
polyline

Escape

Polygon Drawing
Draw polygons to label pixels on a frame.

Task Action
Commit a polygon to the frame, excluding
the currently active line segment

Press Enter or right-click while drawing
the polygon

The polygon closes up by forming a line
between the previously committed point
and the first point in the polygon.

Commit a polygon to the frame, including
the currently active line segment

Double-click while drawing polygon

The polygon closes up by forming a line
between the point where you double-clicked
and the first point in the polygon.

Remove the previously created line
segment from a polygon

Backspace
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Task Action
Cancel drawing and delete the entire
polygon

Escape

Zooming
Task Action
Zoom in or out of frame Move the scroll wheel up (zoom in) or down

(zoom out)

The scroll wheel works in Zoom In or
Zoom Out mode but not Label or Pan
modes.

Zoom in on specific section of frame From the app toolstrip, under Modes,
select Zoom In. Then, draw a box around
the section of the frame you want to zoom
in on.

App Sessions
Task Action
Save current session Ctrl+S

See Also
Ground Truth Labeler

More About
• “Get Started with the Ground Truth Labeler” on page 2-2
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Tracking and Sensor Fusion

• “Visualize Sensor Data and Tracks in Bird's-Eye Scope” on page 3-2
• “Linear Kalman Filters” on page 3-12
• “Extended Kalman Filters” on page 3-19
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Visualize Sensor Data and Tracks in Bird's-Eye Scope
The Bird's-Eye Scope visualizes signals from your Simulink model that represent aspects
of a driving scenario. Using the scope, you can analyze:

• Sensor coverages of vision and radar sensors
• Sensor detections of actors and lane boundaries
• Tracks of moving objects in the scenario

This example shows you how to display these signals on the scope and analyze the signals
during simulation.

Open Model and Scope
Open a model containing signals for sensor detections and tracks. This model is used in
the “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink” example. Also add
the file folder of the model to the MATLAB search path.

addpath(genpath(fullfile(matlabroot,'examples','driving')))
open_system('SyntheticDataSimulinkExample')

Open the scope from the Simulink toolstrip. Under Review Results, click Bird's-Eye
Scope.

Find Signals
When you first open the Bird's-Eye Scope, the scope canvas is blank and displays no
signals. To find signals from the opened model that the scope can display, on the scope
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toolstrip, click Find Signals. The scope updates the block diagram and automatically
finds the signals in the model.

The left pane lists all the signals that the scope found. These signals are grouped based
on their sources within the model.
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Signal Group Description Signal Sources
Ground Truth Road boundaries, lane

markings, and actors in the
scenario, including the ego
vehicle

You cannot modify this
group or any of the signals
within it.

To inspect large road
networks or to view actors
that are located away from
the ego vehicle, use the
World Coordinates View
window. See “Vehicle and
World Coordinate Views”.

• Scenario Reader block
• Vision Detection

Generator and Radar
Detection Generator
blocks (for actor profile
information only, such as
the length, width, and
height of actors)

• If actor profile
information is not set
or is inconsistent
between blocks, the
scope sets the actor
profiles to the block
defaults.

• The profile of the ego
vehicle is always set
to the block defaults.

Sensor Coverage Coverage areas of your
vision and radar sensors,
sorted into Vision and
Radar subgroups

You can move or modify
these subgroups and their
signals. You cannot move or
modify the top-level Sensor
Coverage group.

• Vision Detection
Generator block

• Radar Detection
Generator block
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Signal Group Description Signal Sources
Detections Detections obtained from

your vision and radar
sensors, sorted into Vision
and Radar subgroups

You can move or modify
these subgroups and their
signals. You cannot move or
modify the top-level
Detections group.

• Vision Detection
Generator block

• Radar Detection
Generator block

• Simulation 3D
Probabilistic Radar block

• When you first click
Find Signals,
detection signals from
these blocks appear
under Other
Applicable Signals.
To display the
detections, move the
signals to the
Detections group.

• The Bird's-Eye
Scope does not
display sensor
coverage areas from
these blocks.

Tracks Tracks of objects in the
scenario

• Multi Object Tracker
block

Other Applicable Signals Signals that the scope
cannot automatically group,
such as ones that combine
information from multiple
sensors

Signals in this group do not
display during simulation.

• Blocks that combine or
cluster signals (such as
the Detection
Concatenation block)

• Nonvirtual Simulink
buses containing position
and velocity information
for detections and tracks

Before simulation but after clicking Find Signals, the scope canvas displays all Ground
Truth signals except for non-ego actors and all Sensor Coverage signals. The non-ego
actors and the signals under Detections and Tracks do not display until you simulate the
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model. The signals in Other Applicable Signals do not display during simulation. If you
want the scope to display specific signals, move them into the appropriate group before
simulation. If an appropriate group does not exist, create one.

Run Simulation
Simulate the model from within the Bird's-Eye Scope by clicking Run. The scope canvas
displays the detections and tracks. To display the legend, on the scope toolstrip, click
Legend.
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During simulation, you can perform these actions:

• Inspect detections, tracks, sensor coverage areas, and ego vehicle behavior. The
default view displays the simulation in vehicle coordinates and is centered on the ego
vehicle. To view the wider area around the ego vehicle, or to view other parts of the
scenario, on the scope toolstrip, click World Coordinates. The World Coordinates
View window displays the entire scenario, with the ego vehicle circled. This circle is
not a sensor coverage area. To return to the default display of either window, move

your pointer over the window, and in the upper-right corner, click the home button 
that appears. For more details on these views, see “Vehicle and World Coordinate
Views”.

• Update signal properties. To access the properties of a signal, first select the signal
from the left pane. Then, on the scope toolstrip, click Properties. Using these
properties, you can, for example, show or hide sensor coverage areas or detections. In
addition, to highlight certain sensor coverage areas, you can change their color or
transparency.

• Update Bird's-Eye Scope settings, such as changing the axes limits of the Vehicle
Coordinates View window or changing the display of signal names. On the scope
toolstrip, click Settings. You cannot change the Track position selector and Track
velocity selector settings during simulation. For more details, see the “Settings”
section of the Bird's-Eye Scope reference page.

After simulation, you can hide certain detections or tracks for the next simulation. In the
left pane, under Detections or Tracks, right-click the signal you want to hide. Then,
select Move to Other Applicable to move that signal into the Other Applicable
Signals group. To hide sensor coverage areas, select the corresponding signal in the left
pane, and on the Properties tab, clear the Show Sensor Coverage parameter. You
cannot hide Ground Truth signals during simulation.

Organize Signal Groups (Optional)
To further organize the signals, you can rename signal groups or move signals into new
groups. For example, you can rename the Vision and Radar subgroups to Front of Car
and Back of Car. Then you can drag the signals as needed to move them into the
appropriate groups based on the new group names. When you drag a signal to a new
group, the color of the signal changes to match the color assigned to its group.
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You cannot delete or modify the top-level groups in the left pane, but you can modify or
delete any subgroup. If you delete a subgroup, its signals are moved automatically to the
group that contained that subgroup.

Update Model and Rerun Simulation
After you run the simulation, modify the model and inspect how the changes affect the
visualization on the Bird's-Eye Scope. For example, in the Sensor Simulation subsystem
of the model, open the two Vision Detection Generator blocks. These blocks have sensor
indices of 1 and 2, respectively. On the Measurements tab of each block, reduce the
Maximum detection range (m) parameter to 50. To see how the sensor coverage
changes, rerun the simulation.

When you modify block parameters, you can rerun the simulation without having to find
signals again. If you add or remove blocks, ports, or signal lines, then you must click Find
Signals again before rerunning the simulation.

Save and Close Model
Save and close the model. The settings for the Bird's-Eye Scope are also saved.

If you reopen the model and the Bird's-Eye Scope, the scope canvas is initially blank.

Click Find Signals to find the signals again and view the saved signal properties. For
example, if you reduced the detection range in the previous step, the scope canvas
displays this reduced range.
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When you are simulating the model, remove the model file folder from the MATLAB
search path.

rmpath(genpath(fullfile(matlabroot,'examples','driving')))
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See Also
Bird's-Eye Scope | Detection Concatenation | Multi Object Tracker | Radar Detection
Generator | Scenario Reader | Vision Detection Generator

Related Examples
• “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink”
• “Lateral Control Tutorial”
• “Autonomous Emergency Braking with Sensor Fusion”
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-93
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-99

 See Also
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Linear Kalman Filters
In this section...
“State Equations” on page 3-12
“Measurement Models” on page 3-14
“Linear Kalman Filter Equations” on page 3-14
“Filter Loop” on page 3-15
“Constant Velocity Model” on page 3-16
“Constant Acceleration Model” on page 3-17

When you use a Kalman filter to track objects, you use a sequence of detections or
measurements to construct a model of the object motion. Object motion is defined by the
evolution of the state of the object. The Kalman filter is an optimal, recursive algorithm
for estimating the track of an object. The filter is recursive because it updates the current
state using the previous state, using measurements that may have been made in the
interval. A Kalman filter incorporates these new measurements to keep the state estimate
as accurate as possible. The filter is optimal because it minimizes the mean-square error
of the state. You can use the filter to predict future states or estimate the current state or
past state.

State Equations
For most types of objects tracked in Automated Driving Toolbox, the state vector consists
of one-, two- or three-dimensional positions and velocities.

Start with Newton equations for an object moving in the x-direction at constant
acceleration and convert these equations to space-state form.

mẍ = f

ẍ = f
m = a

If you define the state as

x1 = x
x2 = ẋ,

you can write Newton’s law in state-space form.
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d
dt

x1
x2

=
0 1
0 0

x1
x2

+
0
1

a

You use a linear dynamic model when you have confidence that the object follows this
type of motion. Sometimes the model includes process noise to reflect uncertainty in the
motion model. In this case, Newton’s equations have an additional term.

d
dt

x1
x2

=
0 1
0 0

x1
x2

+
0
1

a +
0
1

vk

vk is the unknown noise perturbations of the acceleration. Only the statistics of the noise
are known. It is assumed to be zero-mean Gaussian white noise.

You can extend this type of equation to more than one dimension. In two dimensions, the
equation has the form

d
dt

x1
x2
y1
y2

=

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

x1
x2
y1
y2

+

0
ax
0
ay

+

0
vx
0
vy

The 4-by-4 matrix on the right side is the state transition model matrix. For independent
x- and y- motions, this matrix is block diagonal.

When you transition to discrete time, you integrate the equations of motion over the
length of the time interval. In discrete form, for a sample interval of T, the state-
representation becomes

x1, k + 1
x2, k + 1

=
1 T
0 1

x1, k
x2, k

+
0
T

a +
0
1

v

The quantity xk+1 is the state at discrete time k+1, and xk is the state at the earlier
discrete time, k. If you include noise, the equation becomes more complicated, because
the integration of noise is not straightforward.

The state equation can be generalized to

xk + 1 = Fkxk + Gkuk + vk

Fk is the state transition matrix and Gk is the control matrix. The control matrix takes into
account any known forces acting on the object. Both of these matrices are given. The last
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term represents noise-like random perturbations of the dynamic model. The noise is
assumed to be zero-mean Gaussian white noise.

Continuous-time systems with input noise are described by linear stochastic differential
equations. Discrete-time systems with input noise are described by linear stochastic
differential equations. A state-space representation is a mathematical model of a physical
system where the inputs, outputs, and state variables are related by first-order coupled
equations.

Measurement Models
Measurements are what you observe about your system. Measurements depend on the
state vector but are not always the same as the state vector. For instance, in a radar
system, the measurements can be spherical coordinates such as range, azimuth, and
elevation, while the state vector is the Cartesian position and velocity. For the linear
Kalman filter, the measurements are always linear functions of the state vector, ruling out
spherical coordinates. To use spherical coordinates, use the extended Kalman filter.

The measurement model assumes that the actual measurement at any time is related to
the current state by

zk = Hkxk + wk

wk represents measurement noise at the current time step. The measurement noise is also
zero-mean white Gaussian noise with covariance matrix Q described by Qk = E[nknk

T].

Linear Kalman Filter Equations
Without noise, the dynamic equations are

xk + 1 = Fkxk + Gkuk .

Likewise, the measurement model has no measurement noise contribution. At each
instance, the process and measurement noises are not known. Only the noise statistics
are known. The

zk = Hkxk

You can put these equations into a recursive loop to estimate how the state evolves and
also how the uncertainties in the state components evolve.
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Filter Loop
Start with a best estimate of the state, x0/0, and the state covariance, P0/0. The filter
performs these steps in a continual loop.

1 Propagate the state to the next step using the motion equations.

xk + 1 k = Fkxk k + Gkuk .

Propagate the covariance matrix as well.

Pk + 1 k = FkPk kFk
T + Qk .

The subscript notation k+1|k indicates that the quantity is the optimum estimate at
the k+1 step propagated from step k. This estimate is often called the a priori
estimate.

Then predict the measurement at the updated time.

zk + 1 k = Hk + 1xk + 1 k

2 Use the difference between the actual measurement and predicted measurement to
correct the state at the updated time. The correction requires computing the Kalman
gain. To do this, first compute the measurement prediction covariance (innovation)

Sk + 1 = Hk + 1Pk + 1 kHk + 1
T + Rk + 1

Then the Kalman gain is

Kk + 1 = Pk + 1 kHk + 1
T Sk + 1

−1

and is derived from using an optimality condition.
3 Correct the predicted estimate with the measurement. Assume that the estimate is a

linear combination of the predicted state and the measurement. The estimate after
correction uses the subscript notation, k+1|k+1. is computed from

xk + 1 k + 1 = xk + 1 k + Kk + 1(zk + 1− zk + 1 k)

where Kk+1 is the Kalman gain. The corrected state is often called the a posteriori
estimate of the state because it is derived after the measurement is included.

Correct the state covariance matrix
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Pk + 1 k + 1 = Pk + 1 k− Kk + 1Sk + 1K′k + 1

Finally, you can compute a measurement based upon the corrected state. This is not a
correction to the measurement but is a best estimate of what the measurement would
be based upon the best estimate of the state. Comparing this to the actual
measurement gives you an indication of the performance of the filter.

This figure summarizes the Kalman loop operations.

Constant Velocity Model
The linear Kalman filter contains a built-in linear constant-velocity motion model.
Alternatively, you can specify the transition matrix for linear motion. The state update at
the next time step is a linear function of the state at the present time. In this filter, the
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measurements are also linear functions of the state described by a measurement matrix.
For an object moving in 3-D space, the state is described by position and velocity in the x-,
y-, and z-coordinates. The state transition model for the constant-velocity motion is

xk + 1
vx, k + 1
yk + 1

vy, k + 1
zk + 1

vz, k + 1

=

1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1

xk
vx, k
yk

vy, k
zk

vz, k

The measurement model is a linear function of the state vector. The simplest case is one
where the measurements are the position components of the state.

mx, k
my, k
mz, k

=
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

xk
vx, k
yk

vy, k
zk

vz, k

Constant Acceleration Model
The linear Kalman filter contains a built-in linear constant-acceleration motion model.
Alternatively, you can specify the transition matrix for constant-acceleration linear
motion. The transition model for linear acceleration is
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xk + 1
vx, k + 1
ax, k + 1
yk + 1

vy, k + 1
ay, k + 1
zk + 1

vz, k + 1
az, k + 1

=

1 T 1
2T2 0 0 0 0 0 0

0 1 T 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 1 T 1
2T2 0 0 0

0 0 0 0 1 T 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 T 1
2T2

0 0 0 0 0 0 0 1 T
0 0 0 0 0 0 0 0 1

xk
vx, k
ax, k
yk

vy, k
ay, k
zk

vz, k
az, k

The simplest case is one where the measurements are the position components of the
state.

mx, k
my, k
mz, k

=
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

xk
vx, k
ax, k
yk

vy, k
ay, k
zk

vz, k
ay, k

See Also
Objects
trackingKF
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Extended Kalman Filters
In this section...
“State Update Model” on page 3-19
“Measurement Model” on page 3-20
“Extended Kalman Filter Loop” on page 3-20
“Predefined Extended Kalman Filter Functions” on page 3-21

Use an extended Kalman filter when object motion follows a nonlinear state equation or
when the measurements are nonlinear functions of the state. A simple example is when
the state or measurements of the object are calculated in spherical coordinates, such as
azimuth, elevation, and range.

State Update Model
The extended Kalman filter formulation linearizes the state equations. The updated state
and covariance matrix remain linear functions of the previous state and covariance
matrix. However, the state transition matrix in the linear Kalman filter is replaced by the
Jacobian of the state equations. The Jacobian matrix is not constant but can depend on
the state itself and time. To use the extended Kalman filter, you must specify both a state
transition function and the Jacobian of the state transition function.

Assume there is a closed-form expression for the predicted state as a function of the
previous state, controls, noise, and time.

xk + 1 = f (xk, uk, wk, t)

The Jacobian of the predicted state with respect to the previous state is

F(x) = ∂ f
∂x .

The Jacobian of the predicted state with respect to the noise is

F(w) = ∂ f
∂wi

.

These functions take simpler forms when the noise enters linearly into the state update
equation:
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xk + 1 = f (xk, uk, t) + wk

In this case, F(w) = 1M.

Measurement Model
In the extended Kalman filter, the measurement can be a nonlinear function of the state
and the measurement noise.

zk = h(xk, vk, t)

The Jacobian of the measurement with respect to the state is

H(x) = ∂h
∂x .

The Jacobian of the measurement with respect to the measurement noise is

H(v) = ∂h
∂v .

These functions take simpler forms when the noise enters linearly into the measurement
equation:

zk = h(xk, t) + vk

In this case, H(v) = 1N.

Extended Kalman Filter Loop
This extended kalman filter loop is almost identical to the linear Kalman filter loop except
that:

• The exact nonlinear state update and measurement functions are used whenever
possible and the state transition matrix is replaced by the state Jacobian

• The measurement matrices are replaced by the appropriate Jacobians.
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Predefined Extended Kalman Filter Functions
Automated Driving Toolbox provides predefined state update and measurement functions
to use in the extended Kalman filter.

Motion Model Function Name Function Purpose
Constant velocity constvel Constant-velocity state

update model
constveljac Constant-velocity state

update Jacobian
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Motion Model Function Name Function Purpose
cvmeas Constant-velocity

measurement model
cvmeasjac Constant-velocity

measurement Jacobian
Constant acceleration constacc Constant-acceleration state

update model
constaccjac Constant-acceleration state

update Jacobian
cameas Constant-acceleration

measurement model
cameasjac Constant-acceleration

measurement Jacobian
Constant turn rate constturn Constant turn-rate state

update model
constturnjac Constant turn-rate state

update Jacobian
ctmeas Constant turn-rate

measurement model
ctmeasjac Constant-turnrate

measurement Jacobian

See Also
Objects
trackingEKF

3 Tracking and Sensor Fusion

3-22



Planning, Mapping, and Control

• “Display Data on OpenStreetMap Basemap” on page 4-2
• “Access HERE HD Live Map Data” on page 4-8
• “Enter HERE HD Live Map Credentials” on page 4-15
• “Create Configuration for HERE HD Live Map Reader” on page 4-17
• “Create HERE HD Live Map Reader” on page 4-23
• “Read and Visualize Data Using HERE HD Live Map Reader” on page 4-27
• “HERE HD Live Map Layers” on page 4-40
• “Control Vehicle Velocity” on page 4-46
• “Velocity Profile of Straight Path” on page 4-49
• “Velocity Profile of Path with Curve and Direction Change” on page 4-55
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Display Data on OpenStreetMap Basemap
This example shows how to display a driving route and vehicle positions on an
OpenStreetMap® basemap.

Add the OpenStreetMap basemap to the list of basemaps available for use with the
geoplayer object. After you add the basemap, you do not need to add it again in future
sessions.

name = 'openstreetmap';
url = 'https://a.tile.openstreetmap.org/${z}/${x}/${y}.png';
copyright = char(uint8(169));
attribution = copyright + "OpenStreetMap contributors";
addCustomBasemap(name,url,'Attribution',attribution)

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create a geographic player. Center the geographic player on the first position of the
driving route and set the zoom level to 12.

zoomLevel = 12;
player = geoplayer(data.latitude(1),data.longitude(1),zoomLevel);
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Display the full route.

plotRoute(player,data.latitude,data.longitude);
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By default, the geographic player uses the World Street Map basemap ('streets')
provided by Esri®. Update the geographic player to use the added OpenStreetMap
basemap instead.

player.Basemap = 'openstreetmap';
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Display the route again.

plotRoute(player,data.latitude,data.longitude);
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Display the positions of the vehicle in a sequence.

for i = 1:length(data.latitude)
   plotPosition(player,data.latitude(i),data.longitude(i))
end
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See Also
addCustomBasemap | geoplayer | plotPosition | plotRoute |
removeCustomBasemap
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Access HERE HD Live Map Data
HERE HD Live Map1 (HERE HDLM), developed by HERE Technologies, is a cloud-based
web service that enables you to access highly accurate, continuously updated map data.
The data is composed of tiled map layers containing information such as the topology and
geometry of roads and lanes, road-level attributes, and lane-level attributes. This data is
suitable for a variety of ADAS applications, including localization, scenario generation,
navigation, and path planning.

Using Automated Driving Toolbox functions and objects, you can create a HERE HDLM
reader, read map data from the HERE HDLM web service, and then visualize the data
from certain layers.

Step 1: Enter Credentials
Before you can use the HERE HDLM web service, you must enter the credentials you
obtained from your agreement with HERE Technologies. To set up your credentials, use
the hereHDLMCredentials function.

hereHDLMCredentials setup

1. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and
to get the required credentials (app_id and app_code) for using the HERE Service.
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For more details, see “Enter HERE HD Live Map Credentials” on page 4-15.

Step 2: Create Reader Configuration
Optionally, to speed up performance, create a hereHDLMConfiguration object that
configures the reader to search for map data in only a specific catalog. These catalogs
correspond to various geographic regions. For example, create a configuration for the
North America region.

config = hereHDLMConfiguration('North America');
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For more details, see “Create Configuration for HERE HD Live Map Reader” on page 4-
17.

Step 3: Create Reader
Create a hereHDLMReader object and optionally specify the configuration. The reader
enables you to read HERE HDLM map data, which is stored is a series of layers, for
selected map tiles. You can select map tiles by map tile ID or by specifying the
coordinates of a driving route. For example, create a reader that reads tiled map layer
data for a driving route in North America.

route = load(fullfile(matlabroot,'examples','driving','geoSequenceNatickMA.mat'));
reader = hereHDLMReader(route.latitude,route.longitude,'Configuration',config);
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For more details, see “Create HERE HD Live Map Reader” on page 4-23.

Step 4: Read and Visualize Data
Use the read function to read data for the selected map tiles. The map data is returned
as a series of layer objects. To plot map data for a selected layer, use the plot function.
For example, read and plot the topology geometry layer for the selected map tiles, and
overlay the driving route on the plot.

topology = read(reader,'TopologyGeometry');
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topology = 

  2×1 TopologyGeometry array with properties:

   Data:
    HereTileId
    IntersectingLinkRefs
    LinksStartingInTile
    NodesInTile
    TileCenterHere2dCoordinate

   Metadata:
    Catalog
    CatalogVersion

plot(topology)
hold on
geoplot(lat,lon,'bo-','DisplayName','Route');
hold off

4 Planning, Mapping, and Control

4-12



For more details, see “Read and Visualize Data Using HERE HD Live Map Reader” on
page 4-27.

See Also
hereHDLMConfiguration | hereHDLMCredentials | hereHDLMReader | plot | read

More About
• “Enter HERE HD Live Map Credentials” on page 4-15
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• “Create Configuration for HERE HD Live Map Reader” on page 4-17
• “Create HERE HD Live Map Reader” on page 4-23
• “Read and Visualize Data Using HERE HD Live Map Reader” on page 4-27
• “HERE HD Live Map Layers” on page 4-40
• “Use HERE HD Live Map Data to Verify Lane Configurations”

External Websites
• HD Live Map Data Specification
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Enter HERE HD Live Map Credentials
To access the HERE HD Live Map2 (HERE HDLM) web service, valid HERE credentials
are required. You can obtain these credentials by entering into a separate agreement with
HERE Technologies. The first time that you use a HERE HDLM function or object in a
MATLAB session, a dialog box prompts you to enter these credentials.

Enter a valid App ID and App Code, and click OK. The credentials are now saved for the
rest of your MATLAB session on your machine. To save your credentials for future
MATLAB sessions on your machine, in the dialog box, select Save my credentials
between MATLAB sessions. These credentials remain saved until you delete them.

To change your credentials, or to set up your credentials before using a HERE HDLM
function or object such as hereHDLMReader or hereHDLMConfiguration, use the
hereHDLMCredentials function.

2. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and
to get the required credentials (app_id and app_code) for using the HERE Service.
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hereHDLMCredentials setup

You can also use this function to later delete your saved credentials.

hereHDLMCredentials delete

After you enter your credentials, you can then configure your HERE HDLM reader to
search for map data in only a specific geographic region. See “Create Configuration for
HERE HD Live Map Reader” on page 4-17. Alternatively, you can create the reader
without specifying a configuration. See “Create HERE HD Live Map Reader” on page 4-
23.

See Also
hereHDLMConfiguration | hereHDLMCredentials | hereHDLMReader

More About
• “Create Configuration for HERE HD Live Map Reader” on page 4-17
• “Create HERE HD Live Map Reader” on page 4-23
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Create Configuration for HERE HD Live Map Reader
In the HERE HD Live Map3 (HERE HDLM) web service, map data is stored in a set of
databases called catalogs. Each catalog corresponds to a different geographic region
(North America, India, Western Europe, and so on). Previous versions of each catalog are
also available from the service.

By creating a hereHDLMConfiguration object, you can configure a HERE HDLM reader
to search for map data from only a specific catalog. These configurations speed up
performance of the reader, because the reader does not search unnecessary catalogs for

3. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and
to get the required credentials (app_id and app_code) for using the HERE Service.
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map data. You can also configure a reader to search from only a specific version of a
catalog.

Configuring a HERE HDLM reader using a hereHDLMConfiguration object is optional.
If you do not specify a configuration, by default, the reader searches for map tiles across
all catalogs and returns map data from the latest version of that catalog.

Create Configuration for Specific Catalog
Configuring a HERE HDLM reader to search only a specific catalog can speed up
performance.

Consider a driving route located in North America.

route = load(fullfile(matlabroot,'examples','driving','geoSequenceNatickMA.mat'));
lat = route.latitude;
lon = route.longitude;
geoplot(lat,lon,'bo-');
geobasemap('streets')
title('Driving Route')
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Suppose you want to read map data for that route from the HERE HDLM service. You can
create a hereHDLMConfiguration object that configures a HERE HDLM reader to
search for that map data within only the North America catalog.

config = hereHDLMConfiguration('North America');
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If you do not specify such a configuration, by default, the reader searches all available
catalogs for this map data.

To configure a HERE HDLM reader for a specific catalog, you can specify either the
region name or catalog name. This table shows the HERE HDLM region names and
corresponding production catalog names.

Region Catalog
'Asia Pacific' 'here-hdmap-ext-apac-1'
'Eastern Europe' 'here-hdmap-ext-eeu-1'
'India' 'here-hdmap-ext-rn-1'
'Middle East And Africa' 'here-hdmap-ext-mea-1'
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Region Catalog
'North America' 'here-hdmap-ext-na-1'
'Oceania' 'here-hdmap-ext-au-1'
'South America' 'here-hdmap-ext-sam-1'
'Western Europe' 'here-hdmap-ext-weu-1'

Create Configuration for Specific Version
The HERE HDLM service also contains map data for previous versions of each catalog.
You can configure a reader to access map data from a specific catalog version.

For example, create a configuration object for the previous version of the Western Europe
catalog.

configLatest = hereHDLMConfiguration('Western Europe');
previousVersion = configLatest.CatalogVersion - 1;
configPrevious = hereHDLMConfiguration('WesternEurope',previousVersion);

The HERE HDLM service determines the availability of previous versions of the catalog. If
you specify a version of the catalog that is not available, then the
hereHDLMConfiguration object returns an error.

Configure Reader
To configure a HERE HDLM reader, specify the configuration object when you create the
hereHDLMReader object. This configuration is stored in the Configuration property of
the reader.

For example, create a HERE HDLM reader using the configuration and latitude-longitude
coordinates that you created in the “Create Configuration for Specific Catalog” on page 4-
18 section. Your catalog version might differ from the one shown here. This reader is
configured for the latest catalog version, but the HERE HDLM service is continually
updated and frequently produces new map versions.

reader = hereHDLMReader(lat,lon,'Configuration',config);
reader.Configuration

  hereHDLMConfiguration with properties:
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           Catalog: 'here-hdmap-ext-na-1'
    CatalogVersion: 2054

For details about creating HERE HDLM readers, see “Create HERE HD Live Map Reader”
on page 4-23.

See Also
hereHDLMConfiguration | hereHDLMReader

More About
• “Create HERE HD Live Map Reader” on page 4-23
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Create HERE HD Live Map Reader
A hereHDLMReader object reads HERE HD Live Map4 (HERE HDLM) data from a
selection of map tiles. By default, these map tiles are set to a zoom level of 14, which
corresponds to a rectangular area of about 5–10 square kilometers.

You select the map tiles from which to read data when you create a hereHDLMReader
object. You can specify the map tile IDs directly, or you can specify a driving route and
read data from the map tiles of that route.

Create Reader from Specified Driving Route
If you have a driving route stored as a vector of latitude-longitude coordinates, you can
use these coordinates to select map tiles from which to read data.

Load the latitude-longitude coordinates for a driving route in North America. For
reference, display the route on a geographic axes.

4. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and
to get the required credentials (app_id and app_code) for using the HERE Service.
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route = load(fullfile(matlabroot,'examples','driving','geoSequenceNatickMA.mat'));
lat = route.latitude;
lon = route.longitude;

geoplot(lat,lon,'bo-');
geobasemap('streets')
title('Driving Route')

Create a hereHDLMConfiguration object for reading data from only the North America
catalog. For more details about configuring HERE HDLM readers, see “Create
Configuration for HERE HD Live Map Reader” on page 4-17. If you have not previously
set up HERE HDLM credentials, a dialog box prompts you to enter them.

config = hereHDLMConfiguration('North America');
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Create a hereHDLMReader object using the specified driving route and configuration.

reader = hereHDLMReader(lat,lon,'Configuration',config);

This HERE HDLM reader enables you to read map data for the tiles that the driving route
is on. The map data is stored in a set of layers containing detailed information about
various aspects of the map. The reader supports reading data from the map layers for the
Road Centerline Model and HD Lane Model. For more details on the layers in these
models, see “HERE HD Live Map Layers” on page 4-40.
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If you call the read function with the HERE HDLM reader, you can read the map tile data
for a specific layer. If the layer supports visualization, you can also plot the layer. For
more details, see “Read and Visualize Data Using HERE HD Live Map Reader” on page 4-
27.

Create Reader from Specified Map Tile IDs
If you know the IDs of the map tiles from which you want to read data, when you create a
hereHDLMReader object, you can specify the map tile IDs directly. Specify the map tile
IDs as an array of unsigned 32-bit integers.

Create a hereHDLMReader object using the map tile IDs and configuration from the
previous section.

tileIds = uint32([321884279 321884450]);
reader = hereHDLMReader(tileIds);

This reader is equivalent to the reader created in the previous section. The only
difference between these two readers is the method for selecting the map tiles from
which to read data.

To learn more about reading and plotting data from map tiles, see “Read and Visualize
Data Using HERE HD Live Map Reader” on page 4-27.

See Also
hereHDLMConfiguration | hereHDLMReader | read

More About
• “Read and Visualize Data Using HERE HD Live Map Reader” on page 4-27
• “HERE HD Live Map Layers” on page 4-40
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Read and Visualize Data Using HERE HD Live Map
Reader

You can read map tile data from the HERE HD Live Map5 (HERE HDLM) web service by
using a hereHDLMReader object and the read function. This data is composed of a series
of map layer objects. The diagram shows the layers available for map tiles corresponding
to a driving route in North America.

5. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and
to get the required credentials (app_id and app_code) for using the HERE Service.
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You can use this map layer data for a variety of automated driving applications. You can
also visualize certain layers by using the plot function.

Create Reader
To read map data using the read function, you must specify a hereHDLMReader object as
an input argument. This object specifies the map tiles from which you want to read data.

Create a hereHDLMReader object that can read data from the map tiles of a driving route
in North America. Configure the reader to read data from only the North America catalog
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by specifying a hereHDLMConfiguration object for the Configuration property of
the reader. If you have not previously entered HERE HDLM credentials, a dialog box
prompts you to enter them. For reference, display the driving route on a geographic axes.

route = load(fullfile(matlabroot,'examples','driving','geoSequenceNatickMA.mat'));
lat = route.latitude;
lon = route.longitude;
config = hereHDLMConfiguration('North America');
reader = hereHDLMReader(lat,lon,'Configuration',config);

geoplot(lat,lon,'bo-');
geobasemap('streets')
title('Driving Route')
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For more details about configuring a HERE HDLM reader, see “Create Configuration for
HERE HD Live Map Reader” on page 4-17. For more details about creating a reader, see
“Create HERE HD Live Map Reader” on page 4-23.

Read Map Layer Data
To read map layer data from the HERE HDLM web service, call the read function with
the reader you created in the previous section and the name of the map layer you want to
read. For example, read data from the layer containing the topology geometry of the road.
The data is returned as an array of map layer objects.

topology = read(reader,'TopologyGeometry')

topology = 

  2×1 TopologyGeometry array with properties:

   Data:
    HereTileId
    IntersectingLinkRefs
    LinksStartingInTile
    NodesInTile
    TileCenterHere2dCoordinate

   Metadata:
    Catalog
    CatalogVersion

Each map layer object corresponds to a map tiles that you selected using the input
hereHDLMReader object. The IDs of these map tiles are stored in the TileIds property
of the HERE HDLM reader.

Inspect the properties of the map layer object for the first map tile. Your catalog version
might differ from the one shown here.

topology(1)

ans = 

  TopologyGeometry with properties:

   Data:
                    HereTileId: 321884279
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          IntersectingLinkRefs: [38×1 struct]
           LinksStartingInTile: [490×1 struct]
                   NodesInTile: [336×1 struct]
    TileCenterHere2dCoordinate: [42.3083 -71.3782]

   Metadata:
                       Catalog: 'here-hdmap-ext-na-1'
                CatalogVersion: 2066

The properties of the TopologyGeometry layer object correspond to valid HERE HDLM
fields for that layer. In these layer objects, the names of the layer fields are modified to fit
the MATLAB naming convention for object properties. For each layer field name, the first
letter and first letter after each underscore are capitalized and the underscores are
removed. This table shows sample name changes.

HERE HDLM Layer Fields MATLAB Layer Object Property
here_tile_id HereTileId
tile_center_here_2d_coordinate TileCenterHere2dCoordinate
nodes_in_tile NodesInTile

The layer objects are MATLAB structures whose properties correspond to structure fields.
To access data from these fields, use dot notation. For example, this code selects the
NodeId subfield from the NodeAttribution field of a layer:

layerData.NodeAttribution.NodeId

This table summarizes the valid types of layer objects and their top-level data fields. The
available layers are for the

Road Centerline Model and HD Lane Model. For an overview of HERE HDLM layers and
the models that they belong to, see “HERE HD Live Map Layers” on page 4-40. For a full
description of the fields, see HD Live Map Data Specification on the HERE Technologies
website.
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Layer Object Description Top-Level Data
Fields (Layer
Object Properties)

Plot Support

AdasAttributes Precision geometry
measurements, such
as slope, elevation,
and curvature of
roads. Use this data
to develop advanced
driver assistance
systems (ADAS).

• HereTileId
• LinkAttributi

on
• NodeAttributi

on

Not available

ExternalReferenc
eAttributes

References to
external map links,
nodes, and
topologies for other
HERE maps.

• HereTileId
• LinkAttributi

on
• NodeAttributi

on

Not available

LaneAttributes Lane-level attributes,
such as direction of
travel and lane type.

• HereTileId
• LaneGroupAttr

ibution

Not available
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Layer Object Description Top-Level Data
Fields (Layer
Object Properties)

Plot Support

LaneGeometryPoly
line

3-D lane geometry
composed of a set of
3-D points joined into
polylines.

• HereTileId
• TileCenterHer

e3dCoordinate
• LaneGroupGeom

etries

Available — Use the
plot function.

LaneRoadReferenc
es

Road and lane group
references and range
information. Use this
data to translate
positions between
the Road Centerline
Model and the HD
Lane Model.

• HereTileId
• LaneGroupLink

References
• LinkLaneGroup

References

Not available
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Layer Object Description Top-Level Data
Fields (Layer
Object Properties)

Plot Support

LaneTopology Topologies of the HD
Lane model,
including lane group,
lane group
connector, lane, and
lane connector
topologies. This layer
also contains the
simplified 2-D
boundary geometry
of the lane model for
determining map tile
affinity and overflow.

• HereTileId
• TileCenterHer

e2dCoordinate
• LaneGroupsSta

rtingInTile
• LaneGroupConn

ectorsInTile
• IntersectingL

aneGroupRefs

Available — Use the
plot function.

RoutingAttribute
s

Road attributes
related to navigation
and conditions.
These attributes are
mapped
parametrically to the
2-D polyline
geometry in the
topology layer.

• HereTileId
• LinkAttributi

on
• NodeAttributi

on
• StrandAttribu

tion
• AttributionGr

oupList

Not available
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Layer Object Description Top-Level Data
Fields (Layer
Object Properties)

Plot Support

RoutingLaneAttri
butes

Core navigation lane
attributes and
conditions, such as
the number of lanes
in a road. These
values are mapped
parametrically to 2-D
polylines along the
road links.

• HereTileId
• LinkAttributi

on

Not available

SpeedAttributes Speed-related road
attributes, such as
speed limits. These
attributes are
mapped to the 2-D
polyline geometry of
the topology layer.

• HereTileId
• LinkAttributi

on

Not available
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Layer Object Description Top-Level Data
Fields (Layer
Object Properties)

Plot Support

TopologyGeometry Topology and 2-D
line geometry of the
road. This layer also
contains definitions
of the nodes and
links in the map tile.

• HereTileId
• TileCenterHer

e2dCoordinate
• NodesInTile
• LinksStarting

InTile
• IntersectingL

inkRefs

Available — Use the
plot function.

Visualize Map Layer Data
You can visualize the data of certain map layers. To visualize these layers, use the plot
function. Plot the topology geometry of the returned map layers. The plot shows the
boundaries, nodes (intersections and dead-ends), and links (streets) within the map tiles.
If a link extends past the tile boundary, the layer data includes that link.

plot(topology)
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Map layer plots are returned on a geographic axes. To customize map displays, you can
use the properties of the geographic axes. For more details, see GeographicAxes
Properties. Overlay the driving route on the plot.

hold on
geoplot(lat,lon,'bo-','DisplayName','Route');
hold off
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See Also
hereHDLMReader | plot | read

More About
• “HERE HD Live Map Layers” on page 4-40
• “Use HERE HD Live Map Data to Verify Lane Configurations”
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External Websites
• HD Live Map Data Specification

 See Also
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HERE HD Live Map Layers
HERE HD Live Map6 (HERE HDLM), developed by HERE Technologies, is a cloud-based
web service that enables you to access highly accurate, continuously updated map data.
The data is composed of tiled map layers containing information such as the topology and
geometry of roads and lanes, and road-level and lane-level attributes. The data is stored
in a series of map catalogs that correspond to geographic regions.

To access layer data for a selection of map tiles, use a hereHDLMReader object. For
information on the hereHDLMReader workflow, see “Access HERE HD Live Map Data” on
page 4-8.

The layers are grouped into these models:

• “Road Centerline Model” on page 4-41 — Provides road topology, shape geometry,
and other road-level attributes

• “HD Lane Model” on page 4-43 — Contains lane topology, highly accurate geometry,
and lane-level attributes

• “HD Localization Model” on page 4-45 — Includes multiple features, such as road
signs, to support localization strategies

hereHDLMReader objects support reading layers from the Road Centerline Model and
HD Lane Model only.

6. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and
to get the required credentials (app_id and app_code) for using the HERE Service.
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Road Centerline Model
The Road Centerline Model represents the topology of the road network. It is composed
of links corresponding to streets and nodes corresponding to intersections and dead-ends.
For each map tile, the layers within this model contain information about these links and
nodes, such as the 2-D line geometry of the road network, speed attributes, and routing
attributes.
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The figure shows a plot for the TopologyGeometry layer, which visualizes the 2-D line
geometry of the nodes and links within a map tile.

This table shows the map layers of the Road Centerline Model that a hereHDLMReader
object can read. The available layers vary by geographic region, so not all layers are
available for every map tile. When you call the read function on a hereHDLMReader
object and specify a map layer name, the function returns the layer data as an object. For
more details about these layer objects, see the read function reference page.

Road Centerline Model Layers Description
TopologyGeometry Topology and 2-D line geometry of the road.

This layer also contains definitions of the
links (streets) and nodes (intersections and
dead-ends) in the map tile.

RoutingAttributes Road attributes related to navigation and
conditions. These attributes are mapped
parametrically to the 2-D polyline geometry
in the topology layer.
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Road Centerline Model Layers Description
RoutingLaneAttributes Core navigation lane attributes and

conditions, such as the number of lanes in a
road. These values are mapped
parametrically to 2-D polylines along the
road links.

SpeedAttributes Speed-related road attributes, such as
speed limits. These attributes are mapped
to the 2-D polyline geometry of the topology
layer.

AdasAttributes Precision geometry measurements such as
slope, elevation, and curvature of roads.
Use this data to develop advanced driver
assistance systems (ADAS).

ExternalReferenceAttributes References to external links, nodes, and
topologies for other HERE maps.

LaneRoadReferences (also part of HD
Lane Model)

Road and lane group references and range
information. Use this data to translate
positions between the Road Centerline
Model and the HD Lane Model.

HD Lane Model
The HD Lane Model represents the topology and geometry of lane groups, which are the
lanes within a link (street). In this model, the shapes of lanes are modeled with 2-D and 3-
D positions and support centimeter-level accuracy. This model provides several lane
attributes, including lane type, direction of travel, and lane boundary color and style.

The figure shows a plot for the LaneTopology layer object, which visualizes the 2-D line
geometry of lane groups and their connectors within a map tile.
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This table shows the map layers of the HD Lane Model that a hereHDLMReader object
can read. The available layers vary by geographic region, so not all layers are available
for every map tile. When you call the read function on a hereHDLMReader object and
specify a map layer name, the function returns the layer data as an object. For more
details about these layer objects, see the read function reference page.

HD Lane Model Layers Description
LaneTopology Topologies of the HD Lane model, including

lane group, lane group connector, lane, and
lane connector topologies. This layer also
contains the simplified 2-D boundary
geometry of the lane model for determining
map tile affinity and overflow.

LaneGeometryPolyline 3-D lane geometry composed of a set of 3-D
points joined into polylines.

LaneAttributes Lane-level attributes, such as direction of
travel and lane type.
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HD Lane Model Layers Description
LaneRoadReferences (also part of Road
Centerline Model)

Road and lane group references and range
information. Used to translate positions
between the Road Centerline Model and the
HD Lane Model.

HD Localization Model
The HD Localization Model contains data, such as traffic signs or other road objects, that
helps autonomous vehicles accurately locate where they are within a road network.
hereHDLMReader objects do not support reading layers from this model.

See Also
hereHDLMReader | plot | read

More About
• “Access HERE HD Live Map Data” on page 4-8
• “Use HERE HD Live Map Data to Verify Lane Configurations”

External Websites
• HD Live Map Data Specification
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Control Vehicle Velocity
This model uses a Longitudinal Controller Stanley block to control the velocity of a
vehicle in forward motion. In this model, the vehicle accelerates from 0 to 10 meters per
second.

The Longitudinal Controller Stanley block is a discrete proportional-integral controller
with integral anti-windup. Given the current velocity and driving direction of a vehicle,
the block outputs the acceleration and deceleration commands needed to match the
specified reference velocity.

Run the model. Then, open the scope to see the change in velocity and the corresponding
acceleration and deceleration commands.
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The Longitudinal Controller Stanley block saturates the acceleration command at a
maximum value of 3 meters per second. The Maximum longitudinal acceleration (m/
s^2) parameter of the block determines this maximum value. Try tuning this parameter
and resimulating the model. Observe the effects of the change on the scope. Other
parameters that you can tune include the gain coefficients of the proportional and

 Control Vehicle Velocity

4-47



integral components of the block, using the Proportional gain, Kp and Integral gain,
Ki parameters, respectively.

See Also
Lateral Controller Stanley | Longitudinal Controller Stanley

More About
• “Automated Parking Valet in Simulink”
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Velocity Profile of Straight Path
This model uses a Velocity Profiler block to generate a velocity profile for a vehicle
traveling forward on a straight, 100-meter path that has no changes in direction.

The Velocity Profiler block generates velocity profiles based on the speed, acceleration,
and jerk constraints that you specify using parameters. You can use the generated
velocity profile as the input reference velocities of a vehicle controller.

This model is for illustrative purposes and does not show how to use the Velocity Profiler
block in a complete automated driving model. To see how to use this block in such a
model, see the “Automated Parking Valet in Simulink” example.

Open and Inspect Model

The model consists of a single Velocity Profiler block with constant inputs. Open the
model.

model = 'VelocityProfileStraightPath';
open_system(model)
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The first three inputs specify information about the driving path.

• The Directions input specifies the driving direction of the vehicle along the path,
where 1 means forward and –1 means reverse. Because the vehicle travels only
forward, the direction is 1 along the entire path.

• The CumLengths input specifies the length of the path. The path is 100 meters long
and is composed of a sequence of 200 cumulative path lengths.

• The Curvatures input specifies the curvature along the path. Because this path is
straight, the curvature is 0 along the entire path.

In a complete automated driving model, you can obtain these input values from the output
of a Path Smoother Spline block, which smooths a path based on a set of poses.

The StartVelocity and EndVelocity inputs specify the velocity of the vehicle at the start
and end of the path, respectively. The vehicle starts the path traveling at a velocity of 1
meter per second and reaches the end of the path traveling at a velocity of 2 meters per
second.

Generate Velocity Profile

Simulate the model to generate the velocity profile.
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out = sim(model);

The output velocity profile is a sequence of velocities along the path that meet the speed,
acceleration, and jerk constraints specified in the parameters of the Velocity Profiler
block.

The block also outputs the times at which the vehicle arrives at each point along the path.
You can use this output to visualize the velocities over time.

Visualize Velocity Profile

Use the simulation output to plot the velocity profile.

t = length(out.tout);
velocities = out.yout.signals(1).values(:,:,t);
times = out.yout.signals(2).values(:,:,t);

plot(times,velocities)
title('Velocity Profile')
xlabel('Times (s)')
ylabel('Velocities (m/s)')
grid on
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A vehicle that follows this velocity profile:

1 Starts at a velocity of 1 meter per second
2 Accelerates to a maximum speed of 10 meters per second, as specified by the

Maximum allowable speed (m/s) parameter of the Velocity Profiler block
3 Decelerates to its ending velocity of 2 meters per second

For comparison, plot the displacement of the vehicle over time by using the cumulative
path lengths.

figure
cumLengths = linspace(0,100,200);
plot(times,cumLengths)
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title('Displacement')
xlabel('Time (s)')
ylabel('Cumulative Path Length (m)')
grid on

For details on how the block calculates the velocity profile, see the “Algorithms” section of
the Velocity Profiler block reference page.

See Also
Path Smoother Spline | Velocity Profiler
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More About
• “Velocity Profile of Path with Curve and Direction Change” on page 4-55
• “Automated Parking Valet in Simulink”
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Velocity Profile of Path with Curve and Direction Change
This model uses a Velocity Profiler block to generate a velocity profile for a driving path
that includes a curve and a change in direction. In this model, the vehicle travels forward
on a curved path for 50 meters, and then travels straight in reverse for another 50
meters.

The Velocity Profiler block generates velocity profiles based on the speed, acceleration,
and jerk constraints that you specify using parameters. You can use the generated
velocity profile as the input reference velocities of a vehicle controller.

This model is for illustrative purposes and does not show how to use the Velocity Profiler
block in a complete automated driving model. To see how to use this block in such a
model, see the “Automated Parking Valet in Simulink” example.

Open and Inspect Model

The model consists of a single Velocity Profiler block with constant inputs. Open the
model.
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model = 'VelocityProfileCurvedPathDirectionChanges';
open_system(model)

The first three inputs specify information about the driving path.

• The Directions input specifies the driving direction of the vehicle along the path,
where 1 means forward and –1 means reverse. In the first path segment, because the
vehicle travels only forward, the direction is 1 along the entire segment. In the second
path segment, because the vehicle travels only in reverse, the direction is –1 along the
entire segment.

• The CumLengths input specifies the length of the path. The path consists of two 50-
meter segments. The first segment represents a forward left turn, and the second
segment represents a straight path in reverse. The path is composed of a sequence of
200 cumulative path lengths, with 100 lengths per 50-meter segment.

• The Curvatures input specifies the curvature along this path. The curvature of the
first path segment corresponds to a turning radius of 50 meters. Because the second
path segment is straight, the curvature is 0 along the entire segment.

In a complete automated driving model, you can obtain these input values from the output
of a Path Smoother Spline block, which smooths a path based on a set of poses.

The StartVelocity and EndVelocity inputs specify the velocity of the vehicle at the start
and end of the path, respectively. The vehicle starts the path traveling at a velocity of 1

4 Planning, Mapping, and Control

4-56



meter per second and reaches the end of the path traveling at a velocity of –1 meters per
second. The negative velocity indicates that the vehicle is traveling in reverse at the end
of the path.

Generate Velocity Profile

Simulate the model to generate the velocity profile.

out = sim(model);

The output velocity profile is a sequence of velocities along the path that meet the speed,
acceleration, and jerk constraints specified in the parameters of the Velocity Profiler
block.

The block also outputs the times at which the vehicle arrives at each point along the path.
You can use this output to visualize the velocities over time.

Visualize Velocity Profile

Use the simulation output to plot the velocity profile.

t = length(out.tout);
velocities = out.yout.signals(1).values(:,:,t);
times = out.yout.signals(2).values(:,:,t);

plot(times,velocities)
title('Velocity Profile')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
annotation('textarrow',[0.63 0.53],[0.56 0.56],'String',{'Direction change'});
grid on
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For this path, the Velocity Profiler block generates two separate velocity profiles: one for
the forward left turn and one for the straight reverse motion. In the final output, the block
concatenates these velocities into a single velocity profile.

A vehicle that follows this velocity profile:

1 Starts at a velocity of 1 meter per second
2 Accelerates forward
3 Decelerates until its velocity reaches 0, so that the vehicle can switch driving

directions
4 Accelerates in reverse
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5 Decelerates until it reaches its ending velocity

In both driving directions, the vehicle fails to reach the maximum speed specified by the
Maximum allowable speed (m/s) parameter of the Velocity Profiler block, because the
path is too short.

For details on how the block calculates the velocity profile, see the “Algorithms” section of
the Velocity Profiler block reference page.

See Also
Path Smoother Spline | Velocity Profiler

More About
• “Velocity Profile of Straight Path” on page 4-49
• “Automated Parking Valet in Simulink”

 See Also

4-59





Driving Scenario Generation and
Sensor Models
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Build a Driving Scenario and Generate Synthetic
Detections

This example shows you how to build a driving scenario and generate vision and radar
sensor detections from it by using the Driving Scenario Designer app. You can use
these detections to test your controllers or sensor fusion algorithms.

This example covers the entire workflow for creating a scenario and generating synthetic
detections. Alternatively, you can generate detections from prebuilt scenarios. For more
details, see “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-18.

Create a New Driving Scenario
To open the app, at the MATLAB command prompt, enter drivingScenarioDesigner.

Add a Road
Add a curved road to the scenario canvas. On the app toolstrip, click Add Road. Then
click one corner of the canvas, extend the road to the opposite corner, and double-click to
create the road.
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To make the road curve, add a road center around which to curve it. Right-click the
middle of the road and select Add Road Center. Then drag the added road center to one
of the empty corners of the canvas.
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To adjust the road further, you can click and drag any of the road centers. To create more
complex curves, add more road centers.

Add Lanes
By default, the road is a single lane and has no lane markings. To make the scenario more
realistic, convert the road into a two-lane highway. In the left pane, on the Roads tab,
expand the Lanes section. Set the Number of lanes to [1 1] and the Lane Width to
3.6 meters, which is a typical highway lane width.
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The white, solid lanes markings on either edge of the road indicate the road shoulder. The
yellow, double-solid lane marking in the center indicates that the road is two-way. To
inspect or modify these lanes, from the Marking list, select one of the lanes and modify
the lane parameters.

Add Vehicles
By default, the first car that you add to a scenario is the ego vehicle, which is the main
car in the driving scenario. The ego vehicle contains the sensors that detect the lane
markings, pedestrians, or other cars in the scenario. Add the ego vehicle, and then add a
second car for the ego vehicle to detect.
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Add Ego Vehicle

To add the ego vehicle, right-click one end of the road, and select Add Car. To specify the
trajectory of the car, right-click the car, select Add Waypoints, and add waypoints along
the road for the car to pass through. After you add the last waypoint along the road, press
Enter. The car autorotates in the direction of the first waypoint. For finer precision over
the trajectory, you can adjust the waypoints. You can also right-click the path to add new
waypoints.

Now adjust the speed of the car. In the left pane, on the Actors tab, set Constant Speed
to 15 m/s. For more control over the speed of the car, clear the Constant Speed check
box and set the velocity between waypoints in the Waypoints table.
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Add Second Car

Add a vehicle for the ego vehicle to detect. On the app toolstrip, click Add Actor and
select Car. Add the second car with waypoints, driving in the lane opposite from the ego
vehicle and on the other end of the road. Leave the speed and other settings of the car
unchanged.

Add a Pedestrian
Add to the scenario a pedestrian crossing the road. Zoom in (Ctrl+Plus) on the middle of
the road, right-click one side of the road, and click Add Pedestrian. Then, to set the path
of the pedestrian, add a waypoint on the other side of the road.
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To test the speed of the cars and the pedestrian, run the simulation. Adjust actor speeds
or other properties as needed by selecting the actor from the left pane of the Actors tab.

5 Driving Scenario Generation and Sensor Models

5-10



Add Sensors
Add front-facing radar and vision (camera) sensors to the ego vehicle. Use these sensors
to generate detections of the pedestrian, the lane boundaries, and the other vehicle.

Add Camera

On the app toolstrip, click Add Camera. The sensor canvas shows standard locations at
which to place sensors. Click the front-most predefined sensor location to add a camera
sensor to the front bumper of the ego vehicle. To place sensors more precisely, you can
disable snapping options. In the bottom-left corner of the sensor canvas, click the
Configure the Sensor Canvas button .

By default, the camera detects only actors and not lanes. To enable lane detections, on
the Sensors tab in the left pane, expand the Detection Parameters section and set
Detection Type to Objects & Lanes. Then expand the Lane Settings section and
update the settings as needed.

Add Radar

Snap a radar sensor to the front-left wheel. Right-click the predefined sensor location for
the wheel and select Add Radar. By default, sensors added to the wheels are short
range.

Tilt the radar sensor toward the front of the car. Move your cursor over the coverage
area, then click and drag the angle marking.
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Add an identical radar sensor to the front-right wheel. Right-click the sensor on the front-
left wheel and click Copy. Then right-click the predefined sensor location for the front-
right wheel and click Paste. The orientation of the copied sensor mirrors the orientation
of the sensor on the opposite wheel.
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The camera and radar sensors now provide overlapping coverage of the front of the ego
vehicle.

Generate Synthetic Detections
Run Scenario

To generate detections from the sensors, click Run. As the scenario runs, the Ego-
Centric View displays the scenario from the perspective of the ego vehicle. The Bird’s-
Eye Plot displays the detections.
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To turn off certain types of detections, in the bottom-left corner of the bird's-eye plot,
click the Configure the Bird's-Eye Plot button .

By default, the scenario ends when the first actor stops. To run the scenario for a set
amount of time, on the app toolstrip, click Settings and change the stop condition.

Export Sensor Detections

• To export detections to the MATLAB workspace, on the app toolstrip, select Export >
Export Sensor Data. Name the workspace variable and click OK. The app saves the
sensor data as a structure containing the actor poses, object detections, and lane
detections at each time step.

• To export a MATLAB function that generates the scenario and its detections, select
Export > Export MATLAB Function. This function returns the sensor detections as
a structure, the scenario as a drivingScenario object, and the sensor models as
visionDetectionGenerator and radarDetectionGenerator System objects. By
modifying this function, you can create variations of the original scenario. For an
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example of this process, see “Create Driving Scenario Variations Programmatically” on
page 5-73.

Save Scenario
After you generate the detections, click Save to save the scenario file. In addition, you
can save the sensor models as separate files. You can also save the road and actor models
together as a separate scenario file.

You can reopen this scenario file from the app. Alternatively, at the MATLAB command
prompt, you can use this syntax.

drivingScenarioDesigner(scenarioFileName)

You can also reopen the scenario by using the exported drivingScenario object. At the
MATLAB command prompt, use this syntax.

drivingScenarioDesigner(scenario)

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader
block to read roads and actors from the scenario file or drivingScenario object into
your model. This block does not directly read sensor data. To add sensors created in the
app to a Simulink model, you can generate a model containing your scenario and sensors
by selecting Export > Export Simulink Model. In this model, a Scenario Reader block
reads the scenario and Radar Detection Generator and Vision Detection Generator blocks
model the sensors.

See Also
Apps
Driving Scenario Designer

Blocks
Radar Detection Generator | Scenario Reader | Vision Detection Generator

Objects
drivingScenario | radarDetectionGenerator | visionDetectionGenerator
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More About
• “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-18
• “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-41
• “Import OpenDRIVE Roads into Driving Scenario” on page 5-61
• “Create Driving Scenario Variations Programmatically” on page 5-73
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-93
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-99

 See Also
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Prebuilt Driving Scenarios in Driving Scenario Designer
The Driving Scenario Designer app provides a library of prebuilt scenarios
representing common driving maneuvers. The app also includes scenarios representing
European New Car Assessment Programme (Euro NCAP®) test protocols.

Choose a Prebuilt Scenario
To get started, open the Driving Scenario Designer app. At the MATLAB command
prompt, enter drivingScenarioDesigner.

In the app, the prebuilt scenarios are stored as MAT-files and organized into folders. To
open a prebuilt scenario file, from the app toolstrip, select Open > Prebuilt Scenario.
Then select a prebuilt scenario from one of the folders.

• “Euro NCAP” on page 5-18
• “Intersections” on page 5-18
• “Turns” on page 5-23
• “U-Turns” on page 5-31

Euro NCAP

These scenarios represent Euro NCAP test protocols. The app includes scenarios for
testing autonomous emergency braking, emergency lane keeping, and lane keep assist
systems. For more details, see “Euro NCAP Driving Scenarios in Driving Scenario
Designer” on page 5-41.

Intersections

These scenarios involve common traffic patterns at four-way intersections and
roundabouts.
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File Name Description
EgoVehicleGoesStraight_BicycleFro
mLeftGoesStraight_Collision.mat

The ego vehicle travels north and goes
straight through an intersection. A bicycle
coming from the left side of the intersection
goes straight and collides with the ego
vehicle.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-19



File Name Description
EgoVehicleGoesStraight_Pedestrian
ToRightGoesStraight.mat

The ego vehicle travels north and goes
straight through an intersection. A
pedestrian in the lane to the right of the
ego vehicle also travels north and goes
straight through the intersection.
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File Name Description
EgoVehicleGoesStraight_VehicleFro
mLeftGoesStraight.mat

The ego vehicle travels north and goes
straight through an intersection. A vehicle
coming from the left side of the intersection
also goes straight. The ego vehicle crosses
in front of the other vehicle.
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File Name Description
EgoVehicleGoesStraight_VehicleFro
mRightGoesStraight.mat

The ego vehicle travels north and goes
straight through an intersection. A vehicle
coming from the right side of the
intersection also goes straight and crosses
through the intersection first.
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File Name Description
Roundabout.mat The ego vehicle travels north and crosses

the path of a pedestrian while entering a
roundabout. The ego vehicle then crosses
the path of another vehicle as both vehicles
drive through the roundabout.

Turns

These scenarios involve turns at four-way intersections.
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File Name Description
EgoVehicleGoesStraight_VehicleFro
mLeftTurnsLeft.mat

The ego vehicle travels north and goes
straight through an intersection. A vehicle
coming from the left side of the intersection
turns left and ends up in front of the ego
vehicle.
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File Name Description
EgoVehicleGoesStraight_VehicleFro
mRightTurnsRight.mat

The ego vehicle travels north and goes
straight through an intersection. A vehicle
coming from the right side of the
intersection turns right and ends up in front
of the ego vehicle.
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File Name Description
EgoVehicleGoesStraight_VehicleInF
rontTurnsLeft.mat

The ego vehicle travels north and goes
straight through an intersection. A vehicle
in front of the ego vehicle turns left at the
intersection.
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File Name Description
EgoVehicleGoesStraight_VehicleInF
rontTurnsRight.mat

The ego vehicle travels north and goes
straight through an intersection. A vehicle
in front of the ego vehicle turns right at the
intersection.
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File Name Description
EgoVehicleTurnsLeft_PedestrianFro
mLeftGoesStraight.mat

The ego vehicle travels north and turns left
at an intersection. A pedestrian coming
from the left side of the intersection goes
straight. The ego vehicle completes its turn
before the pedestrian finishes crossing the
intersection.
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File Name Description
EgoVehicleTurnsLeft_PedestrianInO
ppLaneGoesStraight.mat

The ego vehicle travels north and turns left
at an intersection. A pedestrian in the
opposite lane goes straight through the
intersection. The ego vehicle completes its
turn before the pedestrian finishes crossing
the intersection.
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File Name Description
EgoVehicleTurnsLeft_VehicleInFron
tGoesStraight.mat

The ego vehicle travels north and turns left
at an intersection. A vehicle in front of the
ego vehicle goes straight through the
intersection.
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File Name Description
EgoVehicleTurnsRight_VehicleInFro
ntGoesStraight.mat

The ego vehicle travels north and turns
right at an intersection. A vehicle in front of
the ego vehicle goes straight through the
intersection.

U-Turns

These scenarios involve U-turns at four-way intersections.
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File Name Description
EgoVehicleGoesStraight_VehicleInOpp
LaneMakesUTurn.mat

The ego vehicle travels north and goes
straight through an intersection. A
vehicle in the opposite lane makes a U-
turn. The ego vehicle ends up behind the
vehicle.
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File Name Description
EgoVehicleMakesUTurn_PedestrianFrom
RightGoesStraight.mat

The ego vehicle travels north and makes
a U-turn at an intersection. A pedestrian
coming from the right side of the
intersection goes straight and crosses
the path of the U-turn.
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File Name Description
EgoVehicleMakesUTurn_VehicleInOppLa
neGoesStraight.mat

The ego vehicle travels north and makes
a U-turn at an intersection. A vehicle
traveling south in the opposite direction
goes straight and ends up behind the ego
vehicle.
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File Name Description
EgoVehicleTurnsLeft_Vehicle1MakesUT
urn_Vehicle2GoesStraight.mat

The ego vehicle travels north and turns
left at an intersection. A vehicle in front
of the ego vehicle makes a U-turn at the
intersection. A second vehicle, a truck,
comes from the right side of the
intersection. The ego vehicle ends up in
the lane next to the truck.
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File Name Description
EgoVehicleTurnsLeft_VehicleFromLeft
MakesUTurn.mat

The ego vehicle travels north and turns
left at an intersection. A vehicle coming
from the left side of the intersection
makes a U-turn. The ego vehicle ends up
in the lane next to the other vehicle.
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File Name Description
EgoVehicleTurnsRight_VehicleFromRig
htMakesUTurn.mat

The ego vehicle travels north and turns
right at an intersection. A vehicle coming
from the right side of the intersection
makes a U-turn. The ego vehicle ends up
behind the vehicle, in an adjacent lane.

Modify Scenario
After you choose a scenario, you can modify the parameters of the roads and actors. For
example, from the Actors tab on the left, you can change the position or velocity of the
ego vehicle or other actors. From the Roads tab, you can change the width of the lanes or
the type of lane markings.
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You can also add or modify sensors. For example, from the Sensors tab, you can change
the detection parameters or the positions of the sensors. By default, in Euro NCAP
scenarios, the ego vehicle does not contain sensors. All other prebuilt scenarios have at
least one front-facing camera or radar sensor, set to detect lanes and objects.

Generate Synthetic Detections
To generate detections from the sensors, on the app toolstrip, click Run. As the scenario
runs, the Ego-Centric View displays the scenario from the perspective of the ego
vehicle. The Bird’s-Eye Plot displays the detections.

Export the detections.

• To export detections to the MATLAB workspace, on the app toolstrip, select Export >
Export Sensor Data. Name the workspace variable and click OK. The app saves the
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sensor data as a structure containing the actor poses, object detections, and lane
detections at each time step.

• To export a MATLAB function that generates the scenario and its detections, select
Export > Export MATLAB Function. This function returns the sensor detections as
a structure, the scenario as a drivingScenario object, and the sensor models as
visionDetectionGenerator and radarDetectionGenerator System objects. By
modifying this function, you can create variations of the original scenario. For an
example of this process, see “Create Driving Scenario Variations Programmatically” on
page 5-73.

Save Scenario
Because prebuilt scenarios are read-only, save a copy of the driving scenario to a new
folder. To save the scenario file, on the app toolstrip, select Save > Scenario File As.

You can reopen this scenario file from the app. Alternatively, at the MATLAB command
prompt, you can use this syntax.

drivingScenarioDesigner(scenarioFileName)

You can also reopen the scenario by using the exported drivingScenario object. At the
MATLAB command prompt, use this syntax.

drivingScenarioDesigner(scenario)

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader
block to read roads and actors from the scenario file or drivingScenario object into
your model. This block does not directly read sensor data. To add sensors created in the
app to a Simulink model, you can generate a model containing your scenario and sensors
by selecting Export > Export Simulink Model. In this model, a Scenario Reader block
reads the scenario and Radar Detection Generator and Vision Detection Generator blocks
model the sensors.

See Also
Apps
Driving Scenario Designer | Radar Detection Generator | Vision Detection Generator

Objects
drivingScenario | radarDetectionGenerator | visionDetectionGenerator
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More About
• “Build a Driving Scenario and Generate Synthetic Detections” on page 5-2
• “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-41
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-93
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-99
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Euro NCAP Driving Scenarios in Driving Scenario
Designer

The Driving Scenario Designer app provides a library of prebuilt scenarios
representing European New Car Assessment Programme (Euro NCAP) test protocols. The
app includes scenarios for testing autonomous emergency braking (AEB), emergency lane
keeping (ELK), and lane keep assist (LKA) systems.

Choose a Euro NCAP Scenario
To get started, open the Driving Scenario Designer app. At the MATLAB command
prompt, enter drivingScenarioDesigner.

In the app, the Euro NCAP scenarios are stored as MAT-files and organized into folders.
To open a Euro NCAP file, on the app toolstrip, select Open > Prebuilt Scenario. The
PrebuiltScenarios folder opens, which includes subfolders for all prebuilt scenarios
available in the app (see also “Prebuilt Driving Scenarios in Driving Scenario Designer”
on page 5-18).

Double-click the EuroNCAP folder, and then choose a Euro NCAP scenario from one of
these subfolders.

• “Autonomous Emergency Braking” on page 5-41
• “Emergency Lane Keeping” on page 5-47
• “Lane Keep Assist” on page 5-51

Autonomous Emergency Braking

These scenarios are designed to test autonomous emergency braking (AEB) systems. AEB
systems warn drivers of impending collisions and automatically apply brakes to prevent
collisions or reduce the impact of collisions. Some AEB systems prepare the vehicle and
restraint systems for impact.

The table lists a subset of the available AEB scenarios. Other AEB scenarios in the folder
vary the points of collision, the amount of overlap between vehicles, and the initial gap
between vehicles.
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File Name Description
AEB_Bicyclist_Longitudinal_25widt
h.mat

The ego vehicle collides with the bicyclist
that is in front of it. Before the collision, the
bicyclist and ego vehicle are traveling in
the same direction along the longitudinal
axis. At collision time, the bicycle is 25% of
the way across the width of the ego vehicle.
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File Name Description
AEB_CCRb_2_initialGap_12m.mat A car-to-car rear braking (CCRb) scenario,

where the ego vehicle rear-ends a braking
vehicle. The braking vehicle begins to
decelerate at 2 m/s2. The initial gap
between the ego vehicle and the braking
vehicle is 12 m.
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File Name Description
AEB_CCRm_50overlap.mat A car-to-car rear moving (CCRm) scenario,

where the ego vehicle rear-ends a moving
vehicle. At collision time, the ego vehicle
overlaps with 50% of the width of the
moving vehicle.
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File Name Description
AEB_CCRs_-75overlap.mat A car-to-car rear stationary (CCRs)

scenario, where the ego vehicle rear-ends a
stationary vehicle. At collision time, the ego
vehicle overlaps with –75% of the width of
the stationary vehicle. When the ego
vehicle is to the left of the other vehicle, the
percent overlap is negative.
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File Name Description
AEB_Pedestrian_Farside_50width.ma
t

The ego vehicle collides with a pedestrian
who is traveling from the left side of the
road, which Euro NCAP test protocols refer
to as the far side. These protocols assume
that vehicles travel on the right side of the
road. Therefore, the left side of the road is
the side farthest from the ego vehicle. At
collision time, the pedestrian is 50% of the
way across the width of the ego vehicle.
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File Name Description
AEB_PedestrianChild_Nearside_50wi
dth.mat

The ego vehicle collides with a pedestrian
who is traveling from the right side of the
road, which Euro NCAP test protocols refer
to as the near side. These protocols assume
that vehicles travel on the right side of the
road. Therefore, the right side of the road is
the side nearest to the ego vehicle. At
collision time, the pedestrian is 50% of the
way across the width of the ego vehicle.

Emergency Lane Keeping

These scenarios are designed to test emergency lane keeping (ELK) systems. ELK
systems prevent collisions by warning drivers of impending, unintentional lane
departures.
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The table lists a subset of the available ELK scenarios. Other ELK scenarios in the folder
vary the lateral velocity of the ego vehicle and the lane marking types.

File Name Description
ELK_FasterOvertakingVeh_Intent_Vl
at_0.5.mat

The ego vehicle intentionally changes lanes
and collides with a faster, overtaking
vehicle that is in the other lane. The ego
vehicle travels at a lateral velocity of 0.5
m/s.
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File Name Description
ELK_OncomingVeh_Vlat_0.3.mat The ego vehicle unintentionally changes

lanes and collides with an oncoming vehicle
that is in the other lane. The ego vehicle
travels at a lateral velocity of 0.3 m/s.
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File Name Description
ELK_OvertakingVeh_Unintent_Vlat_0
.3.mat

The ego vehicle unintentionally changes
lanes, overtakes a vehicle in the other lane,
and collides with that vehicle. The ego
vehicle travels at a lateral velocity of 0.3
m/s.

5 Driving Scenario Generation and Sensor Models

5-50



File Name Description
ELK_RoadEdge_NoBndry_Vlat_0.2.mat The ego vehicle unintentionally changes

lanes and ends up on the road edge. The
road edge has no lane boundary markings.
The ego vehicle travels at a lateral velocity
of 0.2 m/s.

Lane Keep Assist

These scenarios are designed to test lane keep assist (LKA) systems. LKA systems detect
unintentional lane departures and automatically adjust the steering angle of the vehicle to
stay within the lane boundaries.

The table lists a subset of the available LKA scenarios. Other LKA scenarios in the folder
vary the lateral velocity of the ego vehicle and the lane marking types.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-51



File Name Description
LKA_DashedLine_Solid_Left_Vlat_0.
5.mat

The ego vehicle unintentionally departs
from a lane that is dashed on the left and
solid on the right. The car departs the lane
from the left (dashed) side, traveling at a
lateral velocity of 0.5 m/s.
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File Name Description
LKA_DashedLine_Unmarked_Right_Vla
t_0.5.mat

The ego vehicle unintentionally departs
from a lane that is dashed on the right and
unmarked on the left. The car departs the
lane from the right (dashed) side, traveling
at a lateral velocity of 0.5 m/s.
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File Name Description
LKA_RoadEdge_NoBndry_Vlat_0.5.mat The ego vehicle unintentionally departs

from a lane and ends up on the road edge.
The road edge has no lane boundary
markings. The car travels at a lateral
velocity of 0.5 m/s.
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File Name Description
LKA_RoadEdge_NoMarkings_Vlat_0.5.
mat

The ego vehicle unintentionally departs
from a lane and ends up on the road edge.
The road has no lane markings. The car
travels at a lateral velocity of 0.5 m/s.
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File Name Description
LKA_SolidLine_Dashed_Left_Vlat_0.
5.mat

The ego vehicle unintentionally departs
from a lane that is solid on the left and
dashed on the right. The car departs the
lane from the left (solid) side, traveling at a
lateral velocity of 0.5 m/s.
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File Name Description
LKA_SolidLine_Unmarked_Right_Vlat
_0.5.mat

The ego vehicle unintentionally departs
from a lane that is a solid on the right and
unmarked on the left. The car departs the
lane from the right (solid) side, traveling at
a lateral velocity of 0.5 m/s.

Modify Scenario
By default, in Euro NCAP scenarios, the ego vehicle does not contain sensors. If you are
testing a vehicle sensor, on the app toolstrip, click Add Camera or Add Radar to add a
sensor to the ego vehicle. Then, on the Sensor tab, adjust the parameters of the sensors
to match your sensor model. If you are testing a camera sensor, to enable the camera to
detect lanes, expand the Detection Parameters section, and set Detection Type to
Lanes & Objects.

You can also adjust the parameters of the roads and actors in the scenario. For example,
from the Actors tab on the left, you can change the position or velocity of the ego vehicle
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or other actors. From the Roads tab, you can change the width of lanes or the type of
lane markings.

Generate Synthetic Detections
To generate detections from any added sensors, click Run. As the scenario runs, the Ego-
Centric View displays the scenario from the perspective of the ego vehicle. The Bird’s-
Eye Plot displays the detections.

Export the detections.

• To export detections to the MATLAB workspace, on the app toolstrip, select Export >
Export Sensor Data. Name the workspace variable and click OK. The app saves the
sensor data as a structure containing the actor poses, object detections, and lane
detections at each time step.
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• To export a MATLAB function that generates the scenario and its detections, select
Export > Export MATLAB Function. This function returns the sensor detections as
a structure, the scenario as a drivingScenario object, and the sensor models as
visionDetectionGenerator and radarDetectionGenerator System objects. By
modifying this function, you can create variations of the original scenario. For an
example of this process, see “Create Driving Scenario Variations Programmatically” on
page 5-73.

Save Scenario
Because Euro NCAP scenarios are read-only, save a copy of the driving scenario to a new
folder. To save the scenario file, on the app toolstrip, select Save > Scenario File As.

You can reopen this scenario file from the app. Alternatively, at the MATLAB command
prompt, you can use this syntax.

drivingScenarioDesigner(scenarioFileName)

You can also reopen the scenario by using the exported drivingScenario object. At the
MATLAB command prompt, use this syntax.

drivingScenarioDesigner(scenario)

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader
block to read roads and actors from the scenario file or drivingScenario object into
your model. This block does not directly read sensor data. To add sensors created in the
app to a Simulink model, you can generate a model containing your scenario and sensors
by selecting Export > Export Simulink Model. In this model, a Scenario Reader block
reads the scenario and Radar Detection Generator and Vision Detection Generator blocks
model the sensors.

References
[1] European New Car Assessment Programme. Euro NCAP Assessment Protocol - SA.

Version 8.0.2. January 2018.

[2] European New Car Assessment Programme. Euro NCAP AEB C2C Test Protocol.
Version 2.0.1. January 2018.

[3] European New Car Assessment Programme. Euro NCAP LSS Test Protocol. Version
2.0.1. January 2018.
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See Also
Apps
Driving Scenario Designer

Blocks
Radar Detection Generator | Scenario Reader | Vision Detection Generator

Objects
drivingScenario | radarDetectionGenerator | visionDetectionGenerator

More About
• “Build a Driving Scenario and Generate Synthetic Detections” on page 5-2
• “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-18
• “Create Driving Scenario Variations Programmatically” on page 5-73
• “Autonomous Emergency Braking with Sensor Fusion”
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-93
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-99

External Websites
• Euro NCAP Safety Assist Protocols
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Import OpenDRIVE Roads into Driving Scenario
OpenDRIVE [1] is an open file format that enables you to specify large and complex road
networks. Using the Driving Scenario Designer app, you can import roads and lanes
from an OpenDRIVE file into a driving scenario. You can then add actors and sensors to
the scenario and generate synthetic lane and object detections for testing your driving
algorithms developed in MATLAB. Alternatively, to test driving algorithms developed in
Simulink, you can use a Scenario Reader block to read the road network and actors into a
model.

To import OpenDRIVE roads and lanes into a drivingScenario object instead of into
the app, use the roadNetwork function.

Import OpenDRIVE File
To get started, open the Driving Scenario Designer app. At the MATLAB command
prompt, enter drivingScenarioDesigner.

To import an OpenDRIVE file, on the app toolstrip, select Open > OpenDRIVE Road
Network. The file you select must be a valid OpenDRIVE file of type .xodr or .xml. In
addition, the file must conform with OpenDRIVE format specification version 1.4H.

From your MATLAB root folder, navigate to and open this file:

matlabroot/examples/driving/intersection.xodr

Because you cannot import an OpenDRIVE road network into an existing scenario file, the
app prompts you to save your current driving scenario.

The Scenario Canvas of the app displays the imported road network.
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The roads in this network are thousands of meters long. You can zoom in (press Ctrl
+Plus) on the road to inspect it more closely.

Inspect Roads
The imported road network shows a pair of two-lane roads intersecting with a single two-
lane road.
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Verify that the road network imported as expected, keeping in mind the following
limitations and behaviors within the app.

OpenDRIVE Import Limitations

The Driving Scenario Designer app does not support all components of the OpenDRIVE
specification.

• You can import only lanes, lane type information, and roads. The import of road
objects and traffic signals is not supported.

• OpenDRIVE files containing large road networks can take up to several minutes to
load. In addition, these road networks can cause slow interactions on the app canvas.
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Examples of large road networks include ones that model the roads of a city or ones
with roads that are thousands of meters long.

• Lanes with variable widths are not supported. The width is set to the highest width
found within that lane. For example, if a lane has a width that varies from 2 meters to
4 meters, the app sets the lane width to 4 meters throughout.

• Roads with lane type information specified as driving, border, restricted,
shoulder, and parking are supported. Lanes with any other lane type information
are imported as border lanes.

• Roads with multiple lane marking styles are not supported. The app applies the first
found marking style to all lanes in the road. For example, if a road has Dashed and
Solid lane markings, the app applies Dashed lane markings throughout.

• Lane marking styles Bott Dots, Curbs, and Grass are not supported. Lanes with
these marking styles are imported as unmarked.

Road Orientation

In the Driving Scenario Designer app, the orientation of roads can differ from the
orientation of roads in other tools that display OpenDRIVE roads. The table shows this
difference in orientation between the app and the OpenDRIVE ODR Viewer.
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Driving Scenario Designer OpenDRIVE ODR Viewer

In the OpenDRIVE ODR viewer, the X-axis runs along the bottom of the viewer, and the Y-
axis runs along the left side of the viewer.

In the Driving Scenario Designer app, the Y-axis runs along the bottom of the canvas,
and the X-axis runs along the left side of the canvas. This world coordinate system in the
app aligns with the vehicle coordinate system (XV,YV) used by vehicles in the driving
scenario, where:

• The XV-axis (longitudinal axis) points forward from a vehicle in the scenario.
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• The YV-axis (lateral axis) points to the left of the vehicle, as viewed when facing
forward.

For more details about the coordinate systems, see “Coordinate Systems in Automated
Driving Toolbox” on page 1-2.
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Road Centers on Edges

In the Driving Scenario Designer app, the location and orientation of roads are defined
by road centers. When you create a road in the app, the road centers are always in the
middle of the road. When you import OpenDRIVE road networks into the app, however,
some roads have their road centers on the road edges. This behavior occurs when the
OpenDRIVE roads are explicitly specified as being right lanes or left lanes.

Consider the divided highway in the imported OpenDRIVE file.

• The lanes on the right side of the highway have their road centers on the right edge.
• The lanes on the left side of the highway have their road centers on the left edge.
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Add Actors and Sensors to Scenario
You can add actors and sensors to a scenario containing OpenDRIVE roads. However, you
cannot add other roads to the scenario. If a scenario contains an OpenDRIVE road
network, the Add Road button in the app toolstrip is disabled. In addition, you cannot
import additional OpenDRIVE road networks into a scenario.

Add an ego vehicle to the scenario by right-clicking one of the roads in the canvas and
selecting Add Car. To specify the trajectory of the car, right-click the car in the canvas,
select Add Waypoints, and add waypoints along the road for the car to pass through.
After you add the last waypoint along the road, press Enter. The car autorotates in the
direction of the first waypoint.
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Add a camera sensor to the ego vehicle. On the app toolstrip, click Add Camera. Then,
on the sensor canvas, add the camera to the predefined location representing the front
window of the car.

Configure the camera to detect lanes. In the left pane, on the Sensors tab, expand the
Detection Parameters section. Then, set the Detection Type parameter to Lanes.

Generate Synthetic Detections
To generate lane detections from the camera, on the app toolstrip, click Run. As the
scenario runs, the Ego-Centric View displays the scenario from the perspective of the
ego vehicle. The Bird’s-Eye Plot displays the left-lane and right-lane boundaries of the
ego vehicle.
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To export the detections to the MATLAB workspace, on the app toolstrip, click Export >
Export Sensor Data. Name the workspace variable and click OK.

The Export > Export MATLAB Function option is disabled. If a scenario contains
OpenDRIVE roads, then you cannot export a MATLAB function that generates the
scenario and its detections.

Save Scenario
After you generate the detections, click Save to save the scenario file. In addition, you
can save the sensor models as separate files. You can also save the road and actor models
together as a separate scenario file.

You can reopen this scenario file from the app. Alternatively, at the MATLAB command
prompt, you can use this syntax.
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drivingScenarioDesigner(scenarioFileName)

When you reopen this file, the Add Road button remains disabled.

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader
block to read the roads and actors from the scenario file into your model. Scenario files
containing large OpenDRIVE road networks can take up to several minutes to read into
models.

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader
block to read roads and actors from the scenario file or drivingScenario object into
your model. This block does not directly read sensor data. To add sensors created in the
app to a Simulink model, you can generate a model containing your scenario and sensors
by selecting ExportExport Simulink Model. In this model, a Scenario Reader block
reads the scenario and Radar Detection Generator and Vision Detection Generator blocks
model the sensors.

References
[1] Dupuis, Marius, et al. OpenDRIVE Format Specification. Revision 1.4, Issue H,

Document No. VI2014.106. Bad Aibling, Germany: VIRES Simulationstechnologie
GmbH, November 4, 2015.
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More About
• “Build a Driving Scenario and Generate Synthetic Detections” on page 5-2
• “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-18
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2

See Also

External Websites
• opendrive.org
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Create Driving Scenario Variations Programmatically
This example shows how to programmatically create variations of a driving scenario that
was built using the Driving Scenario Designer app. Programmatically creating variations
of a scenario enables you to rapidly test your driving algorithms under multiple
conditions.

To create programmatic variations of a driving scenario, follow these steps:

1 Interactively build a driving scenario by using the Driving Scenario Designer app.
2 Export a MATLAB® function that generates the MATLAB code that is equivalent to

this scenario.
3 In the MATLAB Editor, modify the exported function to create variations of the

original scenario.
4 Call the function to generate a drivingScenario object that represents the

scenario.
5 Import the scenario object into the app to simulate the modified scenario or generate

additional scenarios. Alternatively, to simulate the modified scenario in Simulink®,
import the object into a Simulink model by using a Scenario Reader block.

The diagram shows a visual representation of this workflow.

Before beginning this example, add the example file folder to the MATLAB search path.

addpath(genpath(fullfile(matlabroot,'examples','driving')))
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Build Scenario in App

Use the Driving Scenario Designer to interactively build a driving scenario on which to
test your algorithms. For more details on building scenarios, see “Build a Driving
Scenario and Generate Synthetic Detections” on page 5-2.

This example uses a driving scenario that is based on one of the prebuilt scenarios that
you can load from the Driving Scenario Designer app.

Open the scenario file in the app.

drivingScenarioDesigner('LeftTurnScenarioNoSensors.mat')

Click Run to simulate the scenario. In this scenario, the ego vehicle travels north and
goes straight through an intersection. Meanwhile, a vehicle coming from the left side of
the intersection turns left and ends up in front of the ego vehicle, in the adjacent lane.
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This scenario does not include sensors mounted on the ego vehicle. If you have a scenario
that includes sensors, you can save them to a scenario file by selecting Save > Sensors.
Then, in the Driving Scenario Designer app, you can import the sensor file into a
programmatic scenario file that you previously generated. The app does not support the
direct import of programmatic sensor files.

Export MATLAB Function of Scenario

After you view and simulate the scenario, you can export the scenario to the MATLAB
command line. From the Driving Scenario Designer app toolstrip, select Export > Export
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MATLAB Function. The exported function contains the MATLAB code used to produce
the scenario created in the app. Open the exported function.

open LeftTurnScenarioNoSensors.m

Calling this function returns these aspects of the driving scenario.

• scenario — Roads and actors of the scenarios, returned as a drivingScenario
object.

• egoVehicle — Ego vehicle defined in the scenario, returned as a Vehicle object.
For details, see the vehicle function.

If your scenario contains sensors, then the returned function includes additional code for
generating the sensors. If you simulated the scenario containing those sensors, then the
function can also generate the detections produced by those sensors.

Modify Function to Create Scenario Variations

By modifying the code in the exported MATLAB function, you can generate multiple
variations of a single scenario. One common variation is to test the ego vehicle at
different speeds. In the exported MATLAB function, the speed of the ego vehicle is set to a
constant value of 10 meters per second (speed = 10). To generate varying ego vehicle
speeds, you can convert the speed variable into an input argument to the function. Open
the script containing a modified version of the exported function.

open LeftTurnScenarioNoSensorsModified.m

In this modified function:

• egoSpeed is included as an input argument.
• speed, the constant variable, is deleted.
• To compute the ego vehicle trajectory, egoSpeed is used instead of speed.

This figure shows these script modifications.
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To produce additional variations, consider:

• Modifying the road and lane parameters to view the effect on lane detections
• Modifying the trajectory or starting positions of the vehicles
• Modifying the dimensions of the vehicles

Call Function to Generate Programmatic Scenarios

Using the modified function, generate a variation of the scenario in which the ego vehicle
travels at a constant speed of 20 meters per second.

scenario = LeftTurnScenarioNoSensorsModified(20) % m/s

scenario = 
  drivingScenario with properties:

        SampleTime: 0.0400
          StopTime: Inf
    SimulationTime: 0
         IsRunning: 1
            Actors: [1x2 driving.scenario.Vehicle]

Import Modified Scenario into App

To import the modified scenario with the modified vehicle into the app, use the
drivingScenarioDesigner function. Specify the drivingScenario object as an input
argument.

drivingScenarioDesigner(scenario)
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Previously, the other vehicle passed through the intersection first. Now, with the speed of
the ego vehicle increased from 10 to 20 meters per second, the ego vehicle passes
through the intersection first.

When working with drivingScenario objects in the app, keep these points in mind.

• To try out different ego vehicle speeds, call the exported function again, and then
import the new drivingScenario object using the drivingScenarioDesigner
function. The app does not include a menu option for importing these objects.

• To add sensors previously saved to a scenario file into this scenario, from the app
toolstrip, select Open > Sensors.
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• If you make significant changes to the dimensions of an actor, be sure that the
ClassID property of the actor corresponds to a Class ID value specified in the app.
For example, in the app, cars have a Class ID of 1 and trucks have a Class ID of 2. If
you programmatically change a car to have the dimensions of a truck, update the
ClassID property of that vehicle from 1 (car) to 2 (truck).

Import Modified Scenario into Simulink

To import the modified scenario into a Simulink model, use a Scenario Reader block. This
block reads the roads and actors from either a scenario file saved from the app or a
drivingScenario variable saved to the MATLAB workspace or the model workspace.
Add a Scenario Reader block to your model and set these parameters.

1 Set Source of driving scenario to From workspace.
2 Set MATLAB or model workspace variable name to the name of the

drivingScenario variable in your workspace.

When working with drivingScenario objects in Simulink, keep these points in mind.

• When Source of ego vehicle is set to Scenario, the model uses the ego vehicle
defined in your drivingScenario object. The block determines which actor is the
ego vehicle based on the specified ActorID property of the actor. This actor must be a
Vehicle object (see vehicle). To change the designated ego vehicle, update the Ego
vehicle ActorID parameter.

• When connecting the output actor poses to Radar Detection Generator or Vision
Detection Generator blocks, update these sensor blocks to obtain the actor profiles
directly from the drivingScenario object. By default, these blocks use the same set
of actor profiles for all actors, where the profiles are defined on the Actor Profiles tab
of the blocks. To obtain the profiles from the object, on the Actor Profiles tab of each
sensor block, set the Select method to specify actor profiles parameter to MATLAB
expression. Then, set the MATLAB expression for actor profiles parameter to
call the actorProfiles function on the object. For example:
actorProfiles(scenario).

When you are done with this example, remove the example file folder from the MATLAB
search path.
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rmpath(genpath(fullfile(matlabroot,'examples','driving')))

See Also
Apps
Driving Scenario Designer

Blocks
Radar Detection Generator | Scenario Reader | Vision Detection Generator

Functions
actorProfiles | vehicle

Objects
drivingScenario

More About
• “Build a Driving Scenario and Generate Synthetic Detections” on page 5-2
• “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-18
• “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-41
• “Driving Scenario Tutorial”
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Generate Sensor Detection Blocks Using Driving
Scenario Designer

This example shows how to update the radar and camera sensors of a Simulink® model
by using the Driving Scenario Designer app. The Driving Scenario Designer app enables
you to generate multiple sensor configurations quickly and interactively. You can then use
these generated sensor configurations in your existing Simulink models to test your
driving algorithms more thoroughly.

Before beginning this example, add the example file folder to the MATLAB® search path.

addpath(genpath(fullfile(matlabroot,'examples','driving')))

Inspect and Simulate Model

The model used in this example implements an autonomous emergency braking (AEB)
sensor fusion algorithm. For more details about this model, see the “Autonomous
Emergency Braking with Sensor Fusion” example. Open this model.

open_system('AEBTestBenchExample')
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The driving scenario and sensor detection generators used to test the algorithm are
located in the Vehicle Environment > Actors and Sensor Simulation subsystem.
Open this subsystem.

open_system('AEBTestBenchExample/Vehicle and Environment/Actors and Sensor Simulation')
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A Scenario Reader block reads the actors and roads from the specified Driving Scenario
Designer file. The block outputs the non-ego actors. These actors are then passed to
Radar Detection Generator and Vision Detection Generator sensor blocks. During
simulation, these blocks generate detections of the non-ego actors.

Simulate and visualize the scenario on the Bird's-Eye Scope. On the model toolstrip,
under Review Results, click Bird's-Eye Scope. In the scope, click Find Signals, and
then click Run to run the simulation. In this scenario, the AEB model causes the ego
vehicle to break in time to avoid a collision with a pedestrian child who is crossing the
street.
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During this example, you replace the existing sensors in this model with new sensors
created in the Driving Scenario Designer app.

Load Scenario in App

The model uses a driving scenario that is based on one of the prebuilt Euro NCAP test
protocol scenarios. You can load these scenarios from the Driving Scenario Designer app.
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For more details on these scenarios, see “Euro NCAP Driving Scenarios in Driving
Scenario Designer” on page 5-41.

Load the scenario file into the app.

drivingScenarioDesigner('AEB_PedestrianChild_Nearside_50width_overrun.mat')

To simulate the scenario in the app, click Run. In the app simulation, unlike in the model
simulation, the ego vehicle collides with the pedestrian. The app uses a predefined ego
vehicle trajectory, whereas the model uses the AEB algorithm to control the trajectory
and cause the ego vehicle to brake.
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Load Sensors

The loaded scenario file contains only the roads and actors in the scenario. A separate file
contains the sensors. To load these sensors into the scenario, on the app toolstrip, select
Open > Sensors. Open the AEBSensor.mat file located in the example folder.
Alternatively, from your MATLAB root folder, navigate to and open this file: matlabroot/
examples/driving/AEBSensors.mat.

A radar sensor is mounted to the front bumper of the ego vehicle. A camera sensor is
mounted to the front window of the ego vehicle.
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Update Sensors

Update the radar and camera sensors by changing their locations on the ego vehicles.

1 On the Sensor Canvas, click and drag the radar sensor to the predefined Front
Window location.

2 Click and drag the camera sensor to the predefined Front Bumper location. At this
predefined location, the app updates the camera from a short-range sensor to a long-
range sensor.

3 Optionally, in the left pane, on the Sensors tab, try modifying the parameters of the
camera and radar sensors. For example, you can change the detection probability or
the accuracy and noise settings.

4 Save a copy of this new scenario and sensor configuration to a writeable location.

For more details on working with sensors in the app, see “Build a Driving Scenario and
Generate Synthetic Detections” on page 5-2.

This image shows a sample updated sensor configuration.
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Export Scenario and Sensors to Simulink

To generate Simulink blocks for the scenario and its sensors, on the app toolstrip, select
Export > Export Simulink Model. This model shows sample blocks that were exported
from the app.

open_system('AEBGeneratedScenarioAndSensors')
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If you made no changes to the roads and actors in the scenario, then the Scenario Reader
block reads the same road and actor data that was used in the AEB model. The Radar
Detection Generator and Vision Detection Generator blocks model the radar and camera
that you created in the app.

Copy Exported Scenario and Sensors into Existing Model

Replace the scenario and sensors in the AEB model with the newly generated scenario
and sensors. Even if you did not modify the roads and actors and read data from the same
scenario file, replacing the existing Scenario Reader block is still a best practice. Using
this generated block keeps the bus names for scenario and sensors consistent as data
passes between them.

To get started, in the AEB model, reopen the Vehicle Environment > Actors and
Sensor Simulation subsystem.

open_system('AEBTestBenchExample/Vehicle and Environment/Actors and Sensor Simulation')

Next, to cope the scenario and sensor blocks with the generated ones, follow these steps:

1 Delete the existing Scenario Reader, Radar Detection Generator, and Vision Detection
Generator blocks. Do not delete the signal lines that are input to the Scenario Reader
block or output from the sensor blocks. Alternatively, disconnect these blocks without
deleting them, and comment them out of the model. Using this option, you can
compare the existing blocks to the new one and revert back if needed. Select each
block. Then, on the Block tab, select Comment Out.

2 Copy the blocks from the generated model into the AEB model.
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3 Open the copied-in Scenario Reader block and set the Source of ego vehicle
parameter to Input port. Click OK. The AEB model defines the ego vehicle in the
Pack Ego Actor block, which you connect to the Ego Vehicle port of the Scenario
Reader block.

4 Connect the existing signal lines to the copied-in blocks. To clean up the layout of the
model, on the Format tab of the model, select Auto Arrange.

5 Verify that the updated subsystem block diagram resembles the pre-existing block
diagram. Then, save the model, or save a copy of the model to a writeable location.

Simulate Updated Model

To visualize the updated scenario simulation, reopen the Bird's-Eye Scope, click Find
Signals, and then click Run. With this updated sensor configuration, the ego vehicle does
not brake in time.
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To try different sensor configurations, reload the scenario and sensors in the app, export
new scenarios and sensors, and copy them into the AEB model.

When you are done simulating the model, remove the example file folder from the
MATLAB search path.
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rmpath(genpath(fullfile(matlabroot,'examples','driving')))

See Also
Bird's-Eye Scope | Driving Scenario Designer | Radar Detection Generator | Scenario
Reader | Vision Detection Generator

More About
• “Build a Driving Scenario and Generate Synthetic Detections” on page 5-2
• “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-41
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-93
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-99
• “Autonomous Emergency Braking with Sensor Fusion”
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Test Open-Loop ADAS Algorithm Using Driving Scenario
This example shows how to test an open-loop ADAS (advanced driver assistance system)
algorithm in Simulink®. In an open-loop ADAS algorithm, the ego vehicle behavior is
predefined and does not change as the scenario advances during simulation.

To test the scenario, you use a driving scenario that was saved from the Driving Scenario
Designer app. In this example, you read in a scenario using a Scenario Reader block, and
then visually verify the performance of sensor algorithms on the Bird's-Eye Scope.

Before beginning this example, add the example file folder to the MATLAB® search path.

addpath(genpath(fullfile(matlabroot,'examples','driving')))

Inspect Driving Scenario

This example uses a driving scenario that is based on one of the prebuilt scenarios that
you can access through the Driving Scenario Designer app. For more details on these
scenarios, see “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-18.

Open the scenario file in the app.

drivingScenarioDesigner('LeftTurnScenario.mat')

Click Run to simulate the scenario. In this scenario, the ego vehicle travels north and
goes straight through an intersection. Meanwhile, a vehicle coming from the left side of
the intersection turns left and ends up in front of the ego vehicle.
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The ego vehicle also includes a front-facing radar sensor and camera sensor for
generating detections.

Inspect Model

The model used in this example was generated from the app by selecting Export >
Export Simulink Model. In the model, a Scenario Reader block reads the actors and
roads from the scenario file and outputs the non-ego actors and lane boundaries. Open
the model.

open_system('OpenLoopWithScenarios.slx')
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In the Scenario Reader block, the Driving Scenario Designer file name parameter
specifies the name of the scenario file. You can specify a scenario file that is on the
MATLAB search path, such as the scenario file used in this example, or the full path to a
scenario file. Alternatively, you can specify a drivingScenario object by setting Source
of driving scenario to From workspace and then setting MATLAB or model
workspace variable name to the name of a valid drivingScenario object workspace
variable.

The Scenario Reader block outputs the poses of the non-ego actors in the scenario and
the left-lane and right-lane boundaries of the ego vehicle. To output all lane boundaries of
the road on which the ego vehicle is traveling, select the corresponding option for the
Lane boundaries to output parameter.

The actors and lane boundaries are passed to a subsystem containing the sensor blocks.
Open the subsystem.

open_system('OpenLoopWithScenarios/Detection Generators')
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The Radar Detection Generator block accepts the actors as input. The Vision Detection
Generator block accepts the actors and lane boundaries as input. These sensor blocks
produce synthetic detections from the scenario. The outputs are in vehicle coordinates,
where:

• The X-axis points forward from the ego vehicle.
• The Y-axis points to the left of the ego vehicle.
• The origin is located at the center of the rear axle of the ego vehicle.

If a scenario has multiple ego vehicles, in the Scenario Reader block, set the Coordinate
system of outputs parameter to World coordinates instead of Vehicle
coordinates. In the world coordinate system, the actors and lane boundaries are in the
world coordinates of the driving scenario. When this parameter is set to World
coordinates, however, visualization of the scenario using the Bird's-Eye Scope is not
supported.

Because this model is open loop, the ego vehicle behavior does not change as the
simulation advances. Therefore, the Source of ego vehicle parameter is set to
Scenario, and the block reads the predefined ego vehicle pose and trajectory from the
scenario file. For vehicle controllers and other closed-loop models, set the Source of ego
vehicle parameter to Input port. With this option, you specify an ego vehicle that is
defined in the model as an input to the Scenario Reader block. For an example, see “Test
Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-99.

Visually Verify Algorithm

To visualize the scenario and the object and lane boundary detections, use the Bird's-Eye
Scope. From the Simulink toolstrip, under Review Results, click Bird's-Eye Scope.
Then, in the scope, click Find Signals and run the simulation. The vision sensor correctly
generates detections for the non-ego actor and the lane boundaries.
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Update Simulation Settings

This model uses the default simulation stop time of 10 seconds. However, because the
scenario is only about 5 seconds long, the simulation continues to run in the Bird's-Eye
Scope even after the scenario has ended. To synchronize the simulation and scenario stop
times, in the Simulink model toolbar, set the simulation stop time to 5.2 seconds, which is
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the exact stop time of the app scenario. After you run the simulation, the app displays this
value in the bottom-right corner of the scenario canvas.

If the simulation runs too fast in the Bird's-Eye Scope, you can slow down the simulation
by using simulation pacing. From the Simulink toolstrip, select Run > Simulation
Pacing. Select the Enable pacing to slow down simulation check box and decrease
the simulation time to slightly less than 1 second per wall-clock second, such as 0.8
seconds. Then, rerun the simulation in the Bird's-Eye Scope.

When you are done with this example, remove the example file folder from the MATLAB
search path.

rmpath(genpath(fullfile(matlabroot,'examples','driving')))

See Also
Bird's-Eye Scope | Driving Scenario Designer | Radar Detection Generator | Scenario
Reader | Vision Detection Generator

More About
• “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink”
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-99
• “Create Driving Scenario Variations Programmatically” on page 5-73
• “Generate Sensor Detection Blocks Using Driving Scenario Designer” on page 5-81
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Test Closed-Loop ADAS Algorithm Using Driving
Scenario

This model shows how to test a closed-loop ADAS (advanced driver assistance system)
algorithm in Simulink®. In a closed-loop ADAS algorithm, the ego vehicle is controlled by
changes in its scenario environment as the simulation advances.

To test the scenario, you use a driving scenario that was saved from the Driving Scenario
Designer app. In this model, you read in a scenario using a Scenario Reader block, and
then visually verify the performance of the algorithm, an autonomous emergency braking
(AEB) system, on the Bird's-Eye Scope.

Before beginning this example, add the example file folder to the MATLAB® search path.

addpath(genpath(fullfile(matlabroot,'examples','driving')))

Inspect Driving Scenario

This example uses a driving scenario that is based on one of the prebuilt Euro NCAP test
protocol scenarios that you can access through the Driving Scenario Designer app. For
more details on these scenarios, see “Euro NCAP Driving Scenarios in Driving Scenario
Designer” on page 5-41.

Open the scenario file in the app.

drivingScenarioDesigner('AEB_PedestrianChild_Nearside_50width_overrun.mat')

Click Run to simulate the scenario. In this scenario, the ego vehicle collides with a
pedestrian child who is crossing the street.
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In the model used in this example, you use an AEB sensor fusion algorithm to detect the
pedestrian child and test whether the ego vehicle brakes in time to avoid a collision.

Inspect Model

The model implements the AEB algorithm described in the “Autonomous Emergency
Braking with Sensor Fusion” example. Open the model.

open_system('AEBTestBenchExample')
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A Scenario Reader block reads the non-ego actors and roads from the specified scenario
file and outputs the non-ego actors. The ego vehicle is passed into the block through an
input port.

The Scenario Reader block is located in the Vehicle Environment > Actors and Sensor
Simulation subsystem. Open this subsystem.

open_system('AEBTestBenchExample/Vehicle and Environment/Actors and Sensor Simulation')

 Test Closed-Loop ADAS Algorithm Using Driving Scenario

5-101



In the Scenario Reader block, the Driving Scenario Designer file name parameter
specifies the name of the scenario file. You can specify a scenario file that is on the
MATLAB search path, such as the scenario file used in this example, or the full path to a
scenario file. Alternatively, you can specify a drivingScenario object by setting Source
of driving scenario to From workspace and then setting MATLAB or model
workspace variable name to the name of a valid drivingScenario object workspace
variable. In closed-loop simulations, specifying the drivingScenario object is useful
because it enables you finer control over specifying the initial position of the ego vehicle
in your model.

The Scenario Reader block outputs the poses of the non-ego actors in the scenario. These
poses are passed to vision and radar sensors, whose detections are used to determine the
behavior of the AEB controller.

The actor poses are output in vehicle coordinates, where:

• The X-axis points forward from the ego vehicle.
• The Y-axis points to the left of the ego vehicle.
• The origin is located at the center of the rear axle of the ego vehicle.
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If a scenario has multiple ego vehicles, in the Scenario Reader block, set the Coordinate
system of outputs parameter to World coordinates instead of Vehicle
coordinates. In the world coordinate system, the actors and lane boundaries are in the
world coordinates of the driving scenario. When this parameter is set to World
coordinates, however, visualization of the scenario using the Bird's-Eye Scope is not
supported.

Although this scenario includes a predefined ego vehicle, the Scenario Reader block is
configured to ignore this ego vehicle definition. Instead, the ego vehicle is defined in the
model and specified as an input to the Scenario Reader block (the Source of ego vehicle
parameter is set to Input port). As the simulation advances, the AEB algorithm
determines the pose and trajectory of the ego vehicle. If you are developing an open-loop
algorithm, where the ego vehicle is predefined in the driving scenario, set the Source of
ego vehicle parameter to Scenario. For an example, see “Test Open-Loop ADAS
Algorithm Using Driving Scenario” on page 5-93.

Visually Verify Algorithm

To visualize the scenario, use the Bird's-Eye Scope. From the Simulink toolstrip, under
Review Results, click Bird's-Eye Scope. Then, in the scope, click Find Signals and run
the simulation. With the AEB algorithm, the ego vehicle brakes in time to avoid a
collision.
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When you are done verifying the algorithm, remove the example file folder from the
MATLAB search path.
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rmpath(genpath(fullfile(matlabroot,'examples','driving')))

See Also
Bird's-Eye Scope | Driving Scenario Designer | Radar Detection Generator | Scenario
Reader | Vision Detection Generator

More About
• “Autonomous Emergency Braking with Sensor Fusion”
• “Lateral Control Tutorial”
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-93
• “Create Driving Scenario Variations Programmatically” on page 5-73
• “Generate Sensor Detection Blocks Using Driving Scenario Designer” on page 5-81
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3D Simulation for Automated Driving
Automated Driving Toolbox provides a co-simulation framework that models driving
algorithms in Simulink and visualizes their performance in a 3D environment. This 3D
simulation environment uses the Unreal Engine from Epic Games.

Simulink blocks related to the 3D simulation environment can be found in the Automated
Driving Toolbox > Simulation 3D block library. These blocks provide the ability to:

• Configure prebuilt scenes in the 3D simulation environment.
• Place and move vehicles within these scenes.
• Set up camera, radar, and lidar sensors on the vehicles.
• Simulate sensor outputs based on the environment around the vehicle.
• Obtain ground truth data for semantic segmentation and depth information.

This simulation tool is commonly used to supplement real data when developing, testing,
and verifying the performance of automated driving algorithms. In conjunction with a
vehicle model, you can use these blocks to perform realistic closed-loop simulations that
encompass the entire automated driving stack, from perception to control.

For more details on the simulation environment, see “How 3D Simulation for Automated
Driving Works” on page 6-10.

3D Simulation Blocks
To access the Automated Driving Toolbox > Simulation 3D library, at the MATLAB
command prompt, enter:

drivingsim3d
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Scenes

To configure a model to co-simulate with the 3D simulation environment, add a Simulation
3D Scene Configuration block to the model. Using this block, you can choose from a set of
prebuilt 3D scenes where you can test and visualize your driving algorithms. The
following image is from the Virtual Mcity scene.

 3D Simulation for Automated Driving

6-3



The toolbox includes these scenes.

Scene Description
Straight Road Straight road segment
Curved Road Curved, looped road
Parking Lot Empty parking lot
Double Lane Change Straight road with barrels and traffic signs

that are set up for executing a double lane
change maneuver

Open Surface Flat, black pavement surface with no road
objects

US City Block City block with multiple intersections
US Highway Highway with cones, barriers, an animal,

traffic lights, and traffic signs
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Scene Description
Large Parking Lot Parking lot with parked cars, cones, curbs,

and traffic signs
Virtual Mcity City environment that represents the

University of Michigan proving grounds
(see Mcity Test Facility); includes cones,
barriers, an animal, traffic lights, and traffic
signs

Vehicles

To define a virtual vehicle in a scene, add a Simulation 3D Vehicle with Ground Following
block to your model. Using this block, you can control the movement of the vehicle by
supplying the X, Y, and yaw values that define its position and orientation at each time
step. The vehicle automatically moves along the ground.

You can also specify the color and type of vehicle. The toolbox includes these vehicle
types:

• Muscle Car
• Sedan
• Sport Utility Vehicle
• Small Pickup Truck
• Hatchback

Sensors

You can define virtual sensors and attach them at various positions on the vehicles. The
toolbox includes these sensor modeling and configuration blocks.

Block Description
Simulation 3D Camera Camera model with lens. Includes

parameters for image size, focal length,
distortion, and skew.
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Block Description
Simulation 3D Fisheye Camera Fisheye camera that can be described using

the Scaramuzza camera model. Includes
parameters for distortion center, image
size, and mapping coefficients.

Simulation 3D Lidar Scanning lidar sensor model. Includes
parameters for detection range, resolution,
and fields of view.

Simulation 3D Probabilistic Radar Probabilistic radar model that returns a list
of detections. Includes parameters for
radar accuracy, radar bias, detection
probability, and detection reporting. It does
not simulate radar at an electromagnetic
wave propagation level.

Simulation 3D Probabilistic Radar
Configuration

Configures radar signatures for all actors
detected by the Simulation 3D Probabilistic
Radar blocks in a model.

For more details on choosing a sensor, see “Choose a Sensor for 3D Simulation” on page
6-19.

Algorithm Testing and Visualization
Automated Driving Toolbox 3D simulation blocks provide the tools for testing and
visualizing path planning, vehicle control, and perception algorithms.

Path Planning and Vehicle Control

You can use the 3D simulation environment to visualize the motion of a vehicle in a
prebuilt scene. This environment provides you with a way to analyze the performance of
path planning and vehicle control algorithms. After designing these algorithms in
Simulink, you can use the drivingsim3d library to visualize vehicle motion in one of the
prebuilt scenes.

For an example of path planning and vehicle control algorithm visualization, see
“Visualize Automated Parking Valet Using 3D Simulation”.

6 3D Simulation – User's Guide

6-6



Perception

Automated Driving Toolbox provides several blocks for detailed camera, radar, and lidar
sensor modeling. By mounting these sensors on vehicles within the virtual environment,
you can generate synthetic sensor data or sensor detections to test the performance of
your sensor models against perception algorithms.

• For an example of building a lidar perception algorithm using synthetic sensor data
from the 3D simulation environment, see “Simulate Lidar Sensor Perception
Algorithm”.

• For an example of generating radar detections, see “Simulate Radar Sensors in 3D
Environment”.

You can also output and visualize ground truth data to validate depth estimation
algorithms and train semantic segmentation networks. For an example, see “Visualize
Depth and Semantic Segmentation Data in 3D Environment” on page 6-35.

Closed-Loop Systems

After you design and test a perception system within the 3D simulation environment, you
can then use it to drive a control system that actually steers a vehicle. In this case, rather
than manually set up a trajectory, the vehicle uses the perception system to drive itself.
By combining perception and control into a closed-loop system in the 3D simulation
environment, you can develop and test more complex algorithms, such as lane keeping
assist and adaptive cruise control.

For an example that discusses closed-loop simulation in the 3D environment, see “Design
of Lane Marker Detector in 3D Simulation Environment”.

See Also

More About
• “3D Simulation Environment Requirements and Limitations” on page 6-8
• “Simulate a Simple Driving Scenario and Sensor in 3D Environment” on page 6-25
• “Coordinate Systems for 3D Simulation in Automated Driving Toolbox” on page 6-

13
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3D Simulation Environment Requirements and
Limitations

Automated Driving Toolbox provides an interface to a 3D simulation environment that is
visualized using the Unreal Engine from Epic Games. Version 4.19 of this visualization
engine comes installed with Automated Driving Toolbox. When simulating in the 3D
environment, keep these requirements and limitations in mind.

Software Requirements
• Windows® 64-bit platform
• Microsoft® DirectX® — If this software is not already installed on your machine and

you try to simulate in the 3D environment, Automated Driving Toolbox prompts you to
install it. Once you install the software, you must restart the simulation.

Note Mac and Linux® platforms are not supported.

Minimum Hardware Requirements
The 3D simulation environment also requires:

• Graphics card (GPU) — Virtual reality-ready with 8 GB of on-board RAM
• Processor (CPU) — 2.60 GHz
• Memory (RAM) — 12 GB

Limitations
The 3D simulation environment blocks do not support:

• Code generation
• Model reference
• Multiple instances of the Simulation 3D Scene Configuration block
• Multiple instances of the 3D simulation environment
• Parallel simulations
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• Rapid accelerator mode

In addition, when using these blocks in a closed-loop simulation, all 3D simulation
environment blocks must be in the same subsystem.

See Also
Simulation 3D Scene Configuration

More About
• “3D Simulation for Automated Driving” on page 6-2
• “How 3D Simulation for Automated Driving Works” on page 6-10

External Websites
• Unreal Engine

 See Also
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How 3D Simulation for Automated Driving Works
Automated Driving Toolbox provides a co-simulation framework that you can use to model
driving algorithms in Simulink and visualize their performance in a 3D environment. This
3D simulation environment uses the Unreal Engine by Epic Games.

Understanding how this simulation environment works can help you troubleshoot issues
and customize your models.

Communication with 3D Simulation Environment
When you use Automated Driving Toolbox to run your algorithms, Simulink co-simulates
the algorithms in the visualization engine.

In the Simulink environment, Automated Driving Toolbox:

• Configures the 3D visualization environment, specifically the ray tracing, scene
capture from cameras, and initial object positions

• Determines the next position of the objects by using the 3D simulation environment
feedback

The diagram summarizes the communication between Simulink and the visualization
engine.

Block Execution Order
During simulation, the 3D simulation blocks follow a specific execution order:

1 The Simulation 3D Vehicle with Ground Following blocks initialize the vehicles and
send their X, Y, and Yaw signal data to the Simulation 3D Scene Configuration block.
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2 The Simulation 3D Scene Configuration block receives the vehicle data and sends it
to the sensor blocks.

3 The sensor blocks receive the vehicle data and use it to accurately locate and
visualize the vehicles.

The Priority property of the blocks controls this execution order. To access this property
for any block, right-click the block, select Properties, and click the General tab. By
default, Simulation 3D Vehicle with Ground Following blocks have a priority of -1,
Simulation 3D Scene Configuration blocks have a priority of 0, and sensor blocks have a
priority of 1.

The diagram shows this execution order.

If your sensors are not detecting vehicles in the scene, it is possible that the 3D
simulation blocks are executing out of order. Try updating the execution order and
simulating again. For more details on execution order, see “Control and Display the
Execution Order” (Simulink).
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Also be sure that all 3D simulation blocks are located in the same subsystem. Even if the
blocks have the correct Priority settings, if they are located in different subsystems, they
still might execute out of order.

Coordinate Systems
Scenes in the 3D simulation environment use the right-handed Cartesian world
coordinate system defined in ISO 8855. In this coordinate system, when looking in the
positive X-axis direction, the positive Y-axis points left. The positive Z-axis points up from
the ground.

Sensors are mounted on vehicles relative to the vehicle coordinate system. In this system
the positive X-axis points forward from the vehicle, the positive Y-axis points left, and the
positive Z-axis points up from the ground. The vehicle origin is on the ground, below the
longitudinal and lateral center of the vehicle.

These coordinate systems differ from the ones used in the Unreal® Editor. The Unreal
Editor uses left-handed Cartesian coordinate systems, where the Y-axis points right and
the Z-axis points down.

For more details on the coordinate systems used for 3D simulation, see “Coordinate
Systems for 3D Simulation in Automated Driving Toolbox” on page 6-13.

See Also

More About
• “3D Simulation for Automated Driving” on page 6-2
• “3D Simulation Environment Requirements and Limitations” on page 6-8
• “Choose a Sensor for 3D Simulation” on page 6-19
• “Simulate a Simple Driving Scenario and Sensor in 3D Environment” on page 6-25
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Coordinate Systems for 3D Simulation in Automated
Driving Toolbox

Automated Driving Toolbox enables you to simulate your driving algorithms in a 3D
environment that uses the Unreal Engine from Epic Games. In general, the coordinate
systems used in this environment follow the conventions described in “Coordinate
Systems in Automated Driving Toolbox” on page 1-2. However, when simulating in this
environment, it is important to be aware of the specific differences and implementation
details of the 3D simulation coordinate systems.

World Coordinate System
As with other Automated Driving Toolbox functionality, the 3D simulation environment
uses the right-handed Cartesian world coordinate system defined in ISO 8855. The
following 2D top-view image of the Virtual Mcity scene shows the X- and Y-coordinates
of the scene.
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In this coordinate system, when looking in the positive direction of the X-axis, the positive
Y-axis points left. The positive Z-axis points from the ground up. The yaw, pitch, and roll
angles are clockwise-positive, when looking in the positive directions of the Z-, Y-, and X-
axes, respectively. If you view a scene from a 2D top-down perspective, then the yaw
angle is counterclockwise-positive, because you are viewing the scene in the negative
direction of the Z-axis.

Placing Vehicles in a Scene

Vehicles are placed in the world coordinate system of the scenes. The figure shows how
specifying the X, Y, and Yaw ports in the Simulation 3D Vehicle with Ground Following
blocks determines their placement in a scene.

The elevation and banking angle of the ground determine the Z-axis, roll angle, and pitch
angle of the vehicles.

Difference from Unreal Editor World Coordinates

The Unreal Editor uses a left-handed world Cartesian coordinate system in which the
positive Y-axis points right and the positive Z-axis points down. If you are converting from
the Unreal Editor coordinate system to the coordinate system of the 3D environment, you
must flip the sign of the Y-axis, Z-axis, pitch angle, and yaw angle. The X-axis and roll
angle are the same in both coordinate systems.
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Vehicle Coordinate System
The vehicle coordinate system is based on the world coordinate system. In this coordinate
system:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle.
• The Z-axis points up from the ground.
• Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of

the X-, Y-, and Z-axes, respectively. As with the world coordinate system, when looking
at a vehicle from the top down, then the yaw angle is counterclockwise-positive.

The vehicle origin is on the ground, at the geometric center of the vehicle. In this figure,
the blue dot represents the vehicle origin.

Mounting Sensors on a Vehicle

When you add a sensor block, such as a Simulation 3D Camera block, to your model, you
can mount the sensor to a predefined vehicle location, such as the front bumper of the
root center. These mounting locations are in the vehicle coordinate system. When you
specify an offset from these locations, you offset from the origin of the mounting location,
not from the vehicle origin.
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These equations define the vehicle coordinates for a sensor with location (X, Y, Z) and
orientation (Roll, Pitch, Yaw):

• (X, Y, Z) = (Xmount + Xoffset, Ymount + Yoffset, Zmount + Zoffset)
• (Roll, Pitch, Yaw) = (Rollmount + Rolloffset, Pitchmount + Pitchoffset, Yawmount + Yawoffset)

The "mount" variables refer to the predefined mounting locations relative to the vehicle
origin. You define these mounting locations in the Mounting location parameter of the
sensor block.

The "offset" variables refer to the amount of offset from these mounting locations. You
define these offsets in the Relative translation [X, Y, Z] (m) and Relative rotation
[Roll, Pitch, Yaw] (deg) parameters of the sensor block.

For example, consider a sensor mounted to the Rear bumper location. Relative to the
vehicle origin, the sensor has an orientation of (0, 0, 180). In other words, when looking
at the vehicle from the top down, the yaw angle of the sensor is rotated counterclockwise
180 degrees.

To point the sensor 90 degrees further to the right, you need to set the Relative rotation
[Roll, Pitch, Yaw] (deg) parameter to [0,0,90]. In other words, the sensor is rotated
270 degrees counterclockwise relative to the vehicle origin, but it is rotated only 90
degrees counterclockwise relative to the origin of the predefined rear bumper location.
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Difference from Cuboid Vehicle Origin

In the cuboid simulation environment, as described in “Cuboid Driving Scenario
Simulation”, the origin is on the ground, below the center of the rear axle of the vehicle.
If you are converting sensor positions between coordinate systems, then you need to
account for this difference in origin. For an example model that uses such conversions,
see “Lane-Following Control with Monocular Camera Perception” (Model Predictive
Control Toolbox).

Difference from Unreal Editor Vehicle Coordinates

The Unreal Editor uses a left-handed Cartesian vehicle coordinate system in which the
positive Y-axis points right and the positive Z-axis points down. If you are converting from
the Unreal Editor coordinate system to the coordinate system of the 3D environment, you
must flip the sign of the Y-axis, Z-axis, pitch angle, and yaw angle. The X-axis and roll
angle are the same in both coordinate systems.

See Also
Simulation 3D Vehicle with Ground Following

More About
• “How 3D Simulation for Automated Driving Works” on page 6-10
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Coordinate Systems in Vehicle Dynamics Blockset” (Vehicle Dynamics Blockset)
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Choose a Sensor for 3D Simulation
You can use the 3D simulation environment in Automated Driving Toolbox to obtain high-
fidelity sensor data. This environment is rendered using the Unreal Engine from Epic
Games.

The table summarizes the sensor blocks that you can simulate in this environment.

Sensor Block Descript
ion

Sample Visualization Example

Simulation 3D
Camera

• Came
ra
with
lens
that is
based
on the
ideal
pinhol
e
camer
a. See
“What
Is
Came
ra
Calibr
ation?
”
(Comp
uter
Vision
Toolbo
x)

• Includ
es
param
eters
for

Camera image using a Video Viewer block: “Design of
Lane Marker
Detector in 3D
Simulation
Environment”
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Sensor Block Descript
ion

Sample Visualization Example

image
size,
focal
length
,
distor
tion,
and
skew

• Includ
es
option
s to
output
groun
d
truth
for
depth
estim
ation
and
seman
tic
segme
ntatio
n

Depth map using a To Video Display block: “Visualize
Depth and
Semantic
Segmentation
Data in 3D
Environment”
on page 6-35

Semantic segmentation map using a To
Video Display block:

“Visualize
Depth and
Semantic
Segmentation
Data in 3D
Environment”
on page 6-35
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Sensor Block Descript
ion

Sample Visualization Example

Simulation 3D
Fisheye
Camera

• Fishey
e
camer
a that
can be
descri
bed
using
the
Scara
muzza
camer
a
model
. See
“Fishe
ye
Calibr
ation
Basics
”
(Comp
uter
Vision
Toolbo
x)

• Includ
es
param
eters
for
distor
tion
center
,
image
size,

Camera image using a Video Viewer block: “Simulate a
Simple Driving
Scenario and
Sensor in 3D
Environment”
on page 6-25
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Sensor Block Descript
ion

Sample Visualization Example

and
mappi
ng
coeffic
ients

Simulation 3D
Lidar

• Scann
ing
lidar
sensor
model

• Includ
es
param
eters
for
detect
ion
range,
resolu
tion,
and
fields
of
view

Point cloud data using pcplayer within a
MATLAB Function block:

“Simulate
Lidar Sensor
Perception
Algorithm”
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Sensor Block Descript
ion

Sample Visualization Example

Simulation 3D
Probabilistic
Radar

• Proba
bilisti
c
radar
model
that
return
s a list
of
detect
ions

• Includ
es
param
eters
for
radar
accur
acy,
radar
bias,
detect
ion
proba
bility,
and
detect
ion
report
ing

Radar detections using the Bird's-Eye
Scope:

“Simulate
Radar Sensors
in 3D
Environment”

See Also
Blocks
Simulation 3D Probabilistic Radar Configuration | Simulation 3D Scene Configuration |
Simulation 3D Vehicle with Ground Following
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More About
• “3D Simulation for Automated Driving” on page 6-2
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Simulate a Simple Driving Scenario and Sensor in 3D
Environment

Automated Driving Toolbox™ provides blocks for visualizing sensors in a 3D simulation
environment that uses the Unreal Engine® from Epic Games®. This model simulates a
simple driving scenario in a prebuilt 3D scene and captures data from the scene using a
fisheye camera sensor. Use this model to learn the basics of configuring and simulating
scenes, vehicles, and sensors. For more background on the 3D simulation environment,
see “3D Simulation for Automated Driving” on page 6-2.

Model Overview

The model consists of these main components:

• Scene — A Simulation 3D Scene Configuration block configures the scene in which you
simulate.

• Vehicles — Two Simulation 3D Vehicle with Ground Following blocks configure the
vehicles within the scene and specify their trajectories.

• Sensor — A Simulation 3D Fisheye Camera configures the mounting position and
parameters of the fisheye camera used to capture simulation data. A Video Viewer
block visualizes the simulation output of this sensor.
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Inspect Scene

In the Simulation 3D Scene Configuration block, the Scene description parameter
determines the scene where the simulation takes place. This model uses the Large
Parking Lot scene, but you can choose among several prebuilt scenes. To explore a scene,
you can open the 2D image corresponding to the 3D scene.

data = load('sim3d_SpatialReferences.mat');
spatialRef = data.spatialReference.LargeParkingLot;
figure; imshow('sim3d_LargeParkingLot.jpg',spatialRef)
set(gca,'YDir','normal')
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To learn how to explore other scenes, see the corresponding scene reference pages.

The Scene view parameter of this block determines the view from which the Unreal
Engine window displays the scene. In this block, Scene view is set to EgoVehicle,
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which is the name of the ego vehicle (the vehicle with the sensor) in this scenario. During
simulation, the Unreal Engine window displays the scene from behind the ego vehicle.
You can also change the scene view to the other vehicle. To display the scene from the
root of the scene (the scene origin), select root.

Inspect Vehicles

The Simulation 3D Vehicle with Ground Following blocks model the vehicles in the
scenario.

• The Ego Vehicle block vehicle contains the fisheye camera sensor. This vehicle is
modeled as a red hatchback.

• The Target Vehicle block is the vehicle from which the sensor captures data. This
vehicle is modeled as a green SUV.

During simulation, both vehicles travel straight in the parking lot for 50 meters. The
target vehicle is 10 meters directly in front of the ego vehicle.
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The X, Y, and Yaw input ports control the trajectories of these vehicles. X and Y are in the
world coordinates of the scene, which are in meters. Yaw is the orientation angle of the
vehicle and is in degrees.
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The ego vehicle travels from a position of (45,0) to (45,50), oriented 90 degrees
counterclockwise from the origin. To model this position, the input port values are as
follows:

• X is a constant value of 45.
• Y is a multiple of the simulation time. A Digital Clock block outputs the simulation time

every 0.1 second for 5 seconds, which is the stop time of the simulation. These
simulation times are then multiplied by 10 to produce Y values of [0 1 2 3 ...
50], or 1 meter for up to a total of 50 meters.

• Yaw is a constant value of 90.

The target vehicle has the same X and Yaw values as the ego vehicle. The Y value of the
target vehicle is always 10 meters more than the Y value of the ego vehicle.

In both vehicles, the Initial position [X, Y, Z] (m) and Initial rotation [Roll, Pitch,
Yaw] (deg) parameters reflect the initial [X, Y, Z] and [Yaw, Pitch, Roll] values
of the vehicles at the beginning of simulation.

To create more realistic trajectories, you can obtain waypoints from a scene interactively
and specify these waypoints as inputs to the Simulation 3D Vehicle with Ground Following
blocks. See “Select Waypoints for 3D Simulation”.

Inspect Sensor

The Simulation 3D Fisheye Camera block models the sensor used in the scenario. Open
this block and inspect its parameters.

• The Mounting tab contains parameters that determine the mounting location of the
sensor. The fisheye camera sensor is mounted to the center of the roof of the ego
vehicle.

• The Parameters tab contains the intrinsic camera parameters of a fisheye camera.
These parameters are set to their default values.

• The Ground Truth tab contains a parameter for outputting the location and
orientation of the sensor in meters and radians. In this model, the block outputs these
values so you can see how they change during simulation.

The block outputs images captured from the simulation. During simulation, the Video
Viewer block displays these images.
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Simulate Model

Simulate the model. When the simulation begins, it can take a few seconds for the
visualization engine to initialize, especially when you are running it for the first time. The
AutoVrtlEnv window shows a view of the scene in the 3D environment.

The Video Viewer block shows the output of the fisheye camera.
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To change the view of the scene during simulation, use the numbers 1–9 on the numeric
keypad.
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For a bird's-eye view of the scene, press 0.

After simulating the model, try modifying the intrinsic camera parameters and observe
the effects on simulation. You can also change the type of sensor block. For example, try
substituting the 3D Simulation Fisheye Camera with a 3D Simulation Camera block. For
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more details on the available sensor blocks, see “Choose a Sensor for 3D Simulation” on
page 6-19.

See Also
Simulation 3D Camera | Simulation 3D Fisheye Camera | Simulation 3D Lidar | Simulation
3D Probabilistic Radar | Simulation 3D Vehicle with Ground Following | Simulation 3D
Scene Configuration

More About
• “3D Simulation for Automated Driving” on page 6-2
• “3D Simulation Environment Requirements and Limitations” on page 6-8
• “How 3D Simulation for Automated Driving Works” on page 6-10
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Select Waypoints for 3D Simulation”
• “Design of Lane Marker Detector in 3D Simulation Environment”
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Visualize Depth and Semantic Segmentation Data in 3D
Environment

This example shows how to visualize depth and semantic segmentation data captured
from a camera sensor in the Automated Driving Toolbox™ 3D simulation environment.
This 3D environment uses the Unreal Engine® from Epic Games®.

You can use depth visualizations to validate depth estimation algorithms for your sensors.
You can use semantic segmentation visualizations to analyze the classification scheme
used for generating synthetic semantic segmentation data from the 3D environment.

Before beginning this example, add the example file folder to the MATLAB® search path.

addpath(genpath(fullfile(matlabroot,'examples','driving')))

Model Setup

The model used in this example simulates a vehicle driving in a city scene.

• A Simulation 3D Scene Configuration block sets up simulation with the US City Block
scene.

• A Simulation 3D Vehicle with Ground Following block specifies the driving route of the
vehicle. The waypoint poses that make up this route were obtained using the
technique described in the “Select Waypoints for 3D Simulation” example.

• A Simulation 3D Camera block mounted to the rearview mirror of the vehicle captures
data from the driving route. This block outputs the camera, depth, and semantic
segmentation displays by using To Video Display blocks.

Load the MAT-file containing the waypoint poses. Add timestamps to the poses and then
open the model.

load smoothedPoses.mat;

refPosesX   = [linspace(0,20,1000)', smoothedPoses(:,1)];
refPosesY   = [linspace(0,20,1000)', smoothedPoses(:,2)];
refPosesYaw = [linspace(0,20,1000)', smoothedPoses(:,3)];

open_system('DepthSemanticSegmentation.slx')
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Depth Visualization

A depth map is a grayscale representation of camera sensor output. These maps visualize
camera images in grayscale, with brighter pixels indicating objects that are farther away
from the sensor. You can use depth maps to validate depth estimation algorithms for your
sensors.

The Depth port of the Simulation 3D Camera block outputs a depth map of values in the
range of 0 to 1000 meters. In this model, for better visibility, a Saturation block saturates
the depth output to a maximum of 150 meters. Then, a Gain block scales the depth map to
the range [0, 1] so that the To Video Display block can visualize the depth map in
grayscale.

Semantic Segmentation Visualization

Semantic segmentation describes the process of associating each pixel of an image with a
class label, such as road, building, or traffic sign. In the 3D simulation environment, you
generate synthetic semantic segmentation data according to a label classification scheme.
You can them use these labels to train a neural network for automated driving
applications, such as road segmentation. By visualizing the semantic segmentation data,
you can verify your classification scheme.

The Labels port of the Simulation 3D Camera block outputs a set of labels for each pixel
in the output camera image. Each label corresponds to an object class. For example, in
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the default classification scheme used by the block, 1 corresponds to buildings and 2
corresponds to fences. A label of 0 refers to objects of an unknown class and appears as
black. For a complete list of label IDs and their corresponding object descriptions, see the
Labels port description on the Simulation 3D Camera block reference page.

The MATLAB Function block uses the label2rgb function to convert the labels to a
matrix of RGB triplets for visualization. The colormap is based on the colors used in the
CamVid dataset, as shown in the example “Semantic Segmentation Using Deep Learning”
(Computer Vision Toolbox). The colors are mapped to the predefined label IDs that the 3D
simulation blocks use. The helper function sim3dColormap defines the colormap. Inspect
these colormap values.

open sim3dColormap.m

Model Simulation

Run the model.

sim('DepthSemanticSegmentation.slx');

When the simulation begins, it can take a few seconds for the visualization engine to
initialize, especially when you are running it for the first time. The AutoVrtlEnv window
displays the scene from behind the ego vehicle.
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The Camera Display, Depth Display, and Semantic Segmentation Display blocks display
the outputs from the camera sensor.
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To change the visualization range of the output depth data, try updating the values in the
Saturation and Gain blocks.

To change the semantic segmentation colors, try modifying the color values defined in the
sim3dColormap function. Alternatively, in the sim3dlabel2rgb MATLAB Function
block, try replacing the input colormap with your own colormap or a predefined
colormap. See colormap.

Remove the example file folder from the MATLAB search path.

rmpath(genpath(fullfile(matlabroot,'examples','driving')))

See Also
Simulation 3D Camera | Simulation 3D Scene Configuration | Simulation 3D Vehicle with
Ground Following
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More About
• “Simulate a Simple Driving Scenario and Sensor in 3D Environment” on page 6-25
• “Select Waypoints for 3D Simulation”
• “Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)
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